Answer :
The average blue whale weighs [tex]$300,000$[/tex] pounds, and the average man weighs [tex]$\frac{1}{1818}$[/tex] of that. To find the man's weight, we set up the following calculation:
[tex]$$
\text{Man's weight} = \frac{300000}{1818}.
$$[/tex]
Notice that both the numerator and the denominator can be divided by [tex]$6$[/tex]:
[tex]$$
300000 \div 6 = 50000 \quad \text{and} \quad 1818 \div 6 = 303.
$$[/tex]
So, we have:
[tex]$$
\frac{300000}{1818} = \frac{50000}{303}.
$$[/tex]
Next, we convert [tex]$\frac{50000}{303}$[/tex] into a mixed number by dividing [tex]$50000$[/tex] by [tex]$303$[/tex]. The division gives a quotient of [tex]$165$[/tex] and a remainder of [tex]$5$[/tex], which means:
[tex]$$
\frac{50000}{303} = 165 \frac{5}{303}.
$$[/tex]
Thus, the average man weighs
[tex]$$
\boxed{165 \frac{5}{303} \text{ lbs}}.
$$[/tex]
[tex]$$
\text{Man's weight} = \frac{300000}{1818}.
$$[/tex]
Notice that both the numerator and the denominator can be divided by [tex]$6$[/tex]:
[tex]$$
300000 \div 6 = 50000 \quad \text{and} \quad 1818 \div 6 = 303.
$$[/tex]
So, we have:
[tex]$$
\frac{300000}{1818} = \frac{50000}{303}.
$$[/tex]
Next, we convert [tex]$\frac{50000}{303}$[/tex] into a mixed number by dividing [tex]$50000$[/tex] by [tex]$303$[/tex]. The division gives a quotient of [tex]$165$[/tex] and a remainder of [tex]$5$[/tex], which means:
[tex]$$
\frac{50000}{303} = 165 \frac{5}{303}.
$$[/tex]
Thus, the average man weighs
[tex]$$
\boxed{165 \frac{5}{303} \text{ lbs}}.
$$[/tex]