College

The area of a rectangle, [tex]A = l \cdot w[/tex], is represented by the expression [tex]24 x^6 y^{15}[/tex]. Which could be the dimensions of the rectangle?

A. [tex]2 x^5 y^8[/tex] and [tex]12 x y^7[/tex]

B. [tex]6 x^2 y^3[/tex] and [tex]4 x^3 y^5[/tex]

C. [tex]10 x^6 y^{15}[/tex] and [tex]14 x^6 y^{15}[/tex]

D. [tex]9 x^4 y^{11}[/tex] and [tex]12 x^2 y^4[/tex]

Answer :

We are given that the area of the rectangle is

[tex]$$
A = 24x^6y^{15}.
$$[/tex]

If the length and width are represented by two expressions, their product must equal the area. Let’s check the first option.

The first option gives the dimensions as

[tex]$$
\text{Dimension 1} = 2x^5y^8 \quad \text{and} \quad \text{Dimension 2} = 12xy^7.
$$[/tex]

Multiplying these together, we have

[tex]$$
(2x^5y^8)(12xy^7) = (2 \cdot 12)(x^5 \cdot x)(y^8 \cdot y^7).
$$[/tex]

Let’s multiply the coefficients first:

[tex]$$
2 \cdot 12 = 24.
$$[/tex]

Next, add the exponents for [tex]$x$[/tex]:

[tex]$$
x^5 \cdot x = x^{5+1} = x^6.
$$[/tex]

And add the exponents for [tex]$y$[/tex]:

[tex]$$
y^8 \cdot y^7 = y^{8+7} = y^{15}.
$$[/tex]

Thus, the product is

[tex]$$
24x^6y^{15},
$$[/tex]

which exactly matches the given area.

Since the product of the dimensions in the first option reproduces the area, the dimensions of the rectangle can be

[tex]$$
2x^5y^8 \quad \text{and} \quad 12xy^7.
$$[/tex]