College

The area of a rectangle, [tex]A = l \cdot w[/tex], is represented by the expression [tex]24 x^6 y^{15}[/tex]. Which could be the dimensions of the rectangle?

A. [tex]2 x^5 y^8[/tex] and [tex]12 x y^7[/tex]
B. [tex]6 x^2 y^3[/tex] and [tex]4 x^3 y^5[/tex]
C. [tex]10 x^6 y^{15}[/tex] and [tex]14 x^6 y^{15}[/tex]
D. [tex]9 x^4 y^{11}[/tex] and [tex]12 x^2 y^4[/tex]

Answer :

To solve this problem, we need to determine which pair of dimensions, when multiplied together, equals the given area of the rectangle, [tex]\(24x^6y^{15}\)[/tex].

Let's examine each possible pair of dimensions and see if they match the given area.

1. First Pair: [tex]\(2x^5y^8\)[/tex] and [tex]\(12xy^7\)[/tex]

To find the area, multiply these two expressions:

[tex]\[
(2x^5y^8) \times (12xy^7) = 2 \times 12 \times x^{5+1} \times y^{8+7} = 24x^6y^{15}
\][/tex]

This matches the given area, so this pair could be the dimensions of the rectangle.

2. Second Pair: [tex]\(6x^2y^3\)[/tex] and [tex]\(4x^3y^5\)[/tex]

Multiply these two expressions:

[tex]\[
(6x^2y^3) \times (4x^3y^5) = 6 \times 4 \times x^{2+3} \times y^{3+5} = 24x^5y^8
\][/tex]

This does not match the given area, so this pair is not correct.

3. Third Pair: [tex]\(10x^6y^{15}\)[/tex] and [tex]\(14x^6y^{15}\)[/tex]

Multiply these two expressions:

[tex]\[
(10x^6y^{15}) \times (14x^6y^{15}) = 10 \times 14 \times x^{6+6} \times y^{15+15} = 140x^{12}y^{30}
\][/tex]

This does not match the given area, so this pair is not correct.

4. Fourth Pair: [tex]\(9x^4y^{11}\)[/tex] and [tex]\(12x^2y^4\)[/tex]

Multiply these two expressions:

[tex]\[
(9x^4y^{11}) \times (12x^2y^4) = 9 \times 12 \times x^{4+2} \times y^{11+4} = 108x^6y^{15}
\][/tex]

This does not match the given area, so this pair is not correct.

Since only the first pair of dimensions, [tex]\(2x^5y^8\)[/tex] and [tex]\(12xy^7\)[/tex], results in the correct area, [tex]\(24x^6y^{15}\)[/tex], this is the correct answer.