High School

The amount of time Tim spends answering work e-mails in a given day has a mean of one hour and a standard deviation of ten minutes. What would best describe the total amount of time, measured in hours, Tim would spend answering e-mails over the course of 100 days?

Answer :

The best estimate for the total amount of time Tim would spend answering e-mails over the course of 100 days is 100 hours with a standard deviation of 0.53 hours.

To find the total amount of time Tim would spend answering emails over the course of 100 days, we need to use the concept of the Central Limit Theorem. According to the theorem, the sum of a large number of independent and identically distributed random variables approaches a normal distribution regardless of the underlying distribution.

To calculate the standard deviation of the total amount of time Tim spends answering emails over 100 days, we can use the formula:

standard deviation = square root of (n * variance)

where n is the number of days and variance is the variance of the amount of time Tim spends in a day answering emails.

Substituting the values, we get:

standard deviation = square root of (100 * 0.0028) = 0.53 hours

Therefore, Tim would spend an average of 100 hours over the span of 100 days responding to emails, with a standard deviation of 0.53 hours, according to the best estimate.

To learn more about standard deviation please click on below link.

https://brainly.com/question/23907081

#SPJ1