Answer :

To solve the expression [tex]\frac{140}{187} \cdot \left(\frac{13}{15} + \frac{16}{21}\right)[/tex], follow these steps:


  1. Simplify the expression inside the parentheses:

    First, find the sum of [tex]\frac{13}{15}[/tex] and [tex]\frac{16}{21}[/tex]. To add these fractions, you need a common denominator. The least common multiple (LCM) of 15 and 21 is 105.


    • Convert [tex]\frac{13}{15}[/tex] to a fraction with denominator 105:
      [tex]\frac{13}{15} = \frac{13 \times 7}{15 \times 7} = \frac{91}{105}[/tex]


    • Convert [tex]\frac{16}{21}[/tex] to a fraction with denominator 105:
      [tex]\frac{16}{21} = \frac{16 \times 5}{21 \times 5} = \frac{80}{105}[/tex]



    Now add the two fractions:
    [tex]\frac{91}{105} + \frac{80}{105} = \frac{91 + 80}{105} = \frac{171}{105}[/tex]


  2. Simplify [tex]\frac{171}{105}[/tex]:

    Find the greatest common divisor (GCD) of 171 and 105, which is 3.


    • Simplify the fraction:
      [tex]\frac{171}{105} = \frac{171 \div 3}{105 \div 3} = \frac{57}{35}[/tex]



  3. Multiply [tex]\frac{140}{187}[/tex] by [tex]\frac{57}{35}[/tex]:

    Multiply the numerators and denominators:
    [tex]\frac{140}{187} \times \frac{57}{35} = \frac{140 \times 57}{187 \times 35}[/tex]


    • Calculate [tex]140 \times 57 = 7980[/tex] and [tex]187 \times 35 = 6545[/tex].


    • The resulting fraction is [tex]\frac{7980}{6545}[/tex].




  4. Simplify [tex]\frac{7980}{6545}[/tex] if possible:

    Find the GCD of 7980 and 6545, which is 5.


    • Simplify:
      [tex]\frac{7980}{6545} = \frac{7980 \div 5}{6545 \div 5} = \frac{1596}{1309}[/tex]




The final simplified result of the expression [tex]\frac{140}{187} \cdot \left(\frac{13}{15} + \frac{16}{21}\right)[/tex] is [tex]\frac{1596}{1309}[/tex].