College

[tex]
\[
\begin{array}{|c|c|c|}
\hline
t & 112 + 8t & w \\
\hline
2 & 112 + 8(2) & 128 \\
\hline
4 & 112 + 8(4) & 144 \\
\hline
6 & 112 + 8(6) & 160 \\
\hline
8 & 112 + 8(8) & 176 \\
\hline
10 & 112 + 8(10) & 192 \\
\hline
\end{array}
\]
[/tex]

Equation: [tex]w = 112 + 8t[/tex]

1. Which input results in an output of [tex]176[/tex]?

2. What is the output in the ordered pair [tex](4, 144)[/tex]?

[tex]\square[/tex]

Answer :

We start with the equation

[tex]$$
w = 112 + 8t.
$$[/tex]

Step 1. Find the input [tex]$t$[/tex] that results in an output [tex]$w = 176$[/tex].

Set up the equation:

[tex]$$
112 + 8t = 176.
$$[/tex]

Subtract [tex]$112$[/tex] from both sides:

[tex]$$
8t = 176 - 112 = 64.
$$[/tex]

Divide both sides by [tex]$8$[/tex]:

[tex]$$
t = \frac{64}{8} = 8.
$$[/tex]

So, the input that produces an output of [tex]$176$[/tex] is [tex]$t=8$[/tex].

Step 2. Determine the output in the ordered pair [tex]$(4,144)$[/tex].

For the ordered pair [tex]$(4,144)$[/tex], the input value is [tex]$t = 4$[/tex]. Substitute [tex]$4$[/tex] into the equation:

[tex]$$
w = 112 + 8(4) = 112 + 32 = 144.
$$[/tex]

This shows that when [tex]$t = 4$[/tex], the output is [tex]$144$[/tex].

Final Answers:
- The input [tex]$t=8$[/tex] results in an output of [tex]$176$[/tex].
- The ordered pair [tex]$(4,144)$[/tex] indicates that the output for [tex]$t=4$[/tex] is [tex]$144$[/tex].