College

Subtract and simplify:

[tex]\left(5x^3 - 4x + 4\right) - \left(8x - x^2 + 3x^3 - 3\right)[/tex]

A. [tex]2x^3 + x^2 - 12x + 7[/tex]

B. [tex]2x^3 - x^2 + 2x + 1[/tex]

C. [tex]2x^3 + x^2 + 12x - 7[/tex]

D. [tex]2x^3 - x^2 - 12x + 7[/tex]

Answer :

To subtract and simplify the given polynomials, let's break down the expression step by step:

We have two polynomials:

1. [tex]\(5x^3 - 4x + 4\)[/tex]
2. [tex]\(8x - x^2 + 3x^3 - 3\)[/tex]

The expression we need to simplify is:

[tex]\[
(5x^3 - 4x + 4) - (8x - x^2 + 3x^3 - 3)
\][/tex]

Step 1: Distribute the negative sign through the second polynomial.

[tex]\[
5x^3 - 4x + 4 - (8x) + (x^2) - (3x^3) + 3
\][/tex]

Step 2: Combine like terms.

- Combine the [tex]\(x^3\)[/tex] terms: [tex]\(5x^3 - 3x^3 = 2x^3\)[/tex]

- Combine the [tex]\(x^2\)[/tex] term: [tex]\(0 + x^2 = x^2\)[/tex] (since there was no [tex]\(x^2\)[/tex] term in the first polynomial)

- Combine the [tex]\(x\)[/tex] terms: [tex]\(-4x - 8x = -12x\)[/tex]

- Combine the constant terms: [tex]\(4 + 3 = 7\)[/tex]

Putting it all together, we get:

[tex]\[
2x^3 + x^2 - 12x + 7
\][/tex]

Thus, the simplified form of the expression is [tex]\(2x^3 + x^2 - 12x + 7\)[/tex].

Therefore, the correct answer is [tex]\((A)\)[/tex] [tex]\(2x^3 + x^2 - 12x + 7\)[/tex].