High School

Starting from the point (-4, 1, -4), reparametrize the curve: a) Reparametrization details not provided in MCQ format. b) Reparametrize the curve using t + 4. c) Reparametrize the curve using t - 4. d) Reparametrize the curve using t^2 - 4t.

Answer :

Final answer:

Reparametrizing a curve alters the parameter of the function representing the curve. In this example, we use the parameters t+4, t-4, and t^2 - 4t to create equivalent functions that simplify computation of integrals,

Explanation:

The process of reparametrizing a curve involves changing the parameter of the function that represents the curve. Given the point (-4, 1, -4), and the instructions to reparametrize the curve using t+4, t-4, and t^2 - 4t, we will alter the curve's parameter.

Reparametrizing using t+4 gives us the curve (t+4)^2 which when evaluated at t=-4 gives us the original point (-4 ,1, -4). Similarly, Reparametrizing using t-4 gives us the curve (t-4)^2 which when evaluated at t=-4 gives us the original point. Lastly, reparametrizing the curve using the equation t^2 - 4t involves substituting the new parameter which will give us a new curve but keeping the same point.

Reparametrizing is used in calculus, specifically in integrals, to create equivalent functions that simplify the computation of complex integrals.

Learn more about Reparametrizing here:

https://brainly.com/question/32939980

#SPJ1