College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solving Two-Step Equations

15. Which equation, when solved, results in a different value of [tex]$x$[/tex] than the other three? Show your work:

A. [tex]$8.3 = -0.6x + 11.3$[/tex]

B. [tex]$11.3 = 8.3 + 0.6x$[/tex]

C. [tex]$11.3 - 0.6x = 8.3$[/tex]

D. [tex]$8.3 - 0.6x = 11.3$[/tex]

Answer :

We want to find the value of [tex]$x$[/tex] in each equation and then determine which one gives a different result.

--------------------------------------------------

1. For equation A,
[tex]$$
8.3 = -0.6x + 11.3.
$$[/tex]
Subtract [tex]$11.3$[/tex] from both sides:
[tex]$$
8.3 - 11.3 = -0.6x,
$$[/tex]
which simplifies to:
[tex]$$
-3.0 = -0.6x.
$$[/tex]
Now, divide both sides by [tex]$-0.6$[/tex]:
[tex]$$
x = \frac{-3.0}{-0.6} = 5.0.
$$[/tex]

--------------------------------------------------

2. For equation B,
[tex]$$
11.3 = 8.3 + 0.6x.
$$[/tex]
Subtract [tex]$8.3$[/tex] from both sides:
[tex]$$
11.3 - 8.3 = 0.6x,
$$[/tex]
which gives:
[tex]$$
3.0 = 0.6x.
$$[/tex]
Now, divide both sides by [tex]$0.6$[/tex]:
[tex]$$
x = \frac{3.0}{0.6} = 5.0.
$$[/tex]

--------------------------------------------------

3. For equation C,
[tex]$$
11.3 - 0.6x = 8.3.
$$[/tex]
Subtract [tex]$11.3$[/tex] from both sides:
[tex]$$
-0.6x = 8.3 - 11.3,
$$[/tex]
which simplifies to:
[tex]$$
-0.6x = -3.0.
$$[/tex]
Then, divide both sides by [tex]$-0.6$[/tex]:
[tex]$$
x = \frac{-3.0}{-0.6} = 5.0.
$$[/tex]

--------------------------------------------------

4. For equation D,
[tex]$$
8.3 - 0.6x = 11.3.
$$[/tex]
Subtract [tex]$8.3$[/tex] from both sides:
[tex]$$
-0.6x = 11.3 - 8.3,
$$[/tex]
which gives:
[tex]$$
-0.6x = 3.0.
$$[/tex]
Finally, divide both sides by [tex]$-0.6$[/tex]:
[tex]$$
x = \frac{3.0}{-0.6} = -5.0.
$$[/tex]

--------------------------------------------------

Since equations A, B, and C all yield [tex]$x = 5.0$[/tex], but equation D gives [tex]$x = -5.0$[/tex], the equation that results in a different value of [tex]$x$[/tex] is:

[tex]$$\boxed{8.3-0.6x=11.3}.$$[/tex]

Thus, the answer is D.