Answer :
Sure! Let's solve the inequality step by step:
We start with the inequality:
[tex]\[ 2(x - 5) \leq 40 \][/tex]
Step 1: Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \times x - 2 \times 5 \leq 40 \][/tex]
[tex]\[ 2x - 10 \leq 40 \][/tex]
Step 2: Add 10 to both sides of the inequality to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 2x - 10 + 10 \leq 40 + 10 \][/tex]
[tex]\[ 2x \leq 50 \][/tex]
Step 3: Divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} \leq \frac{50}{2} \][/tex]
[tex]\[ x \leq 25 \][/tex]
So, the solution to the inequality is:
[tex]\[ x \leq 25 \][/tex]
This means [tex]\( x \)[/tex] can be any number less than or equal to 25.
We start with the inequality:
[tex]\[ 2(x - 5) \leq 40 \][/tex]
Step 1: Distribute the 2 across the terms inside the parentheses:
[tex]\[ 2 \times x - 2 \times 5 \leq 40 \][/tex]
[tex]\[ 2x - 10 \leq 40 \][/tex]
Step 2: Add 10 to both sides of the inequality to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 2x - 10 + 10 \leq 40 + 10 \][/tex]
[tex]\[ 2x \leq 50 \][/tex]
Step 3: Divide both sides by 2 to solve for [tex]\( x \)[/tex]:
[tex]\[ \frac{2x}{2} \leq \frac{50}{2} \][/tex]
[tex]\[ x \leq 25 \][/tex]
So, the solution to the inequality is:
[tex]\[ x \leq 25 \][/tex]
This means [tex]\( x \)[/tex] can be any number less than or equal to 25.