Answer :
We need to determine what percent of [tex]$176$[/tex] is [tex]$35.2$[/tex]. This can be set up as the equation:
[tex]$$
\frac{p}{100} \times 176 = 35.2,
$$[/tex]
where [tex]$p$[/tex] represents the percent.
Step 1. Multiply both sides of the equation by [tex]$100$[/tex] to eliminate the fraction:
[tex]$$
p \times 176 = 35.2 \times 100.
$$[/tex]
Step 2. Simplify the right-hand side:
[tex]$$
35.2 \times 100 = 3520,
$$[/tex]
so the equation becomes:
[tex]$$
176p = 3520.
$$[/tex]
Step 3. Solve for [tex]$p$[/tex] by dividing both sides by [tex]$176$[/tex]:
[tex]$$
p = \frac{3520}{176}.
$$[/tex]
Step 4. Simplify the division:
[tex]$$
p = 20.
$$[/tex]
Thus, [tex]$35.2$[/tex] is [tex]$\boxed{20\%}$[/tex] of [tex]$176$[/tex].
[tex]$$
\frac{p}{100} \times 176 = 35.2,
$$[/tex]
where [tex]$p$[/tex] represents the percent.
Step 1. Multiply both sides of the equation by [tex]$100$[/tex] to eliminate the fraction:
[tex]$$
p \times 176 = 35.2 \times 100.
$$[/tex]
Step 2. Simplify the right-hand side:
[tex]$$
35.2 \times 100 = 3520,
$$[/tex]
so the equation becomes:
[tex]$$
176p = 3520.
$$[/tex]
Step 3. Solve for [tex]$p$[/tex] by dividing both sides by [tex]$176$[/tex]:
[tex]$$
p = \frac{3520}{176}.
$$[/tex]
Step 4. Simplify the division:
[tex]$$
p = 20.
$$[/tex]
Thus, [tex]$35.2$[/tex] is [tex]$\boxed{20\%}$[/tex] of [tex]$176$[/tex].