College

Solve the equation using the quadratic formula:

[tex]15x^2 + 13x = 0[/tex]

a. [tex]x = -\frac{13}{15}, 0[/tex]
b. [tex]x = 0[/tex]
c. [tex]x = \frac{13}{15}, 0[/tex]
d. [tex]x = \pm \frac{13}{15}[/tex]

Please select the best answer from the choices provided:
A
B
C
D

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, let's follow these steps:

The quadratic formula is:

[tex]\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\][/tex]

In the equation [tex]\(15x^2 + 13x = 0\)[/tex], the coefficients are [tex]\(a = 15\)[/tex], [tex]\(b = 13\)[/tex], and [tex]\(c = 0\)[/tex].

1. Calculate the discriminant:

[tex]\[
b^2 - 4ac = 13^2 - 4 \times 15 \times 0
\][/tex]

[tex]\[
= 169
\][/tex]

2. Calculate the roots using the quadratic formula:

- For the first root ([tex]\(+\)[/tex] sign):

[tex]\[
x_1 = \frac{-13 + \sqrt{169}}{2 \times 15}
\][/tex]

[tex]\[
= \frac{-13 + 13}{30}
\][/tex]

[tex]\[
= \frac{0}{30} = 0
\][/tex]

- For the second root ([tex]\(-\)[/tex] sign):

[tex]\[
x_2 = \frac{-13 - \sqrt{169}}{2 \times 15}
\][/tex]

[tex]\[
= \frac{-13 - 13}{30}
\][/tex]

[tex]\[
= \frac{-26}{30} = -\frac{13}{15}
\][/tex]

Therefore, the solutions are [tex]\(x = 0\)[/tex] and [tex]\(x = -\frac{13}{15}\)[/tex].

So, the best answer choice that matches these solutions is:

a. [tex]\(x = -\frac{13}{15}, 0\)[/tex]