College

Solve the equation using the quadratic formula:

[tex]15x^2 + 13x = 0[/tex]

a. [tex]x = -\frac{13}{15}, 0[/tex]
b. [tex]x = 0[/tex]
c. [tex]x = \frac{13}{15}, 0[/tex]
d. [tex]x = \pm \frac{13}{15}[/tex]

Please select the best answer from the choices provided:
A
B
C
D

Answer :

To solve the equation [tex]\(15x^2 + 13x = 0\)[/tex] using the quadratic formula, we first need to identify the coefficients. The equation is in the form [tex]\(ax^2 + bx + c = 0\)[/tex], where:

- [tex]\(a = 15\)[/tex]
- [tex]\(b = 13\)[/tex]
- [tex]\(c = 0\)[/tex]

Since the constant term [tex]\(c\)[/tex] is 0, it's important to note that we can factor out an [tex]\(x\)[/tex] from the equation:

[tex]\[ 15x^2 + 13x = x(15x + 13) = 0 \][/tex]

Setting each factor equal to zero gives us two potential solutions:

1. [tex]\(x = 0\)[/tex]

2. [tex]\(15x + 13 = 0\)[/tex]

To solve the second equation, [tex]\(15x + 13 = 0\)[/tex], we can isolate [tex]\(x\)[/tex]:

[tex]\[ 15x = -13 \][/tex]

[tex]\[ x = -\frac{13}{15} \][/tex]

So, the solutions to the equation [tex]\(15x^2 + 13x = 0\)[/tex] are:

[tex]\[ x = 0 \quad \text{and} \quad x = -\frac{13}{15} \][/tex]

Thus, the correct answer from the given choices is:

a. [tex]\(x = -\frac{13}{15}, 0\)[/tex]