High School

Solve the equation:

[tex]x^2 - 6x + 9 = 0[/tex]

A. [tex]x = 3[/tex]

B. [tex]x = 6[/tex]

C. [tex]x = 3[/tex] or [tex]x = -3[/tex]

D. [tex]x = 6[/tex] or [tex]x = -9[/tex]

E. [tex]x = 9[/tex] or [tex]x = -9[/tex]

Answer :

To solve the quadratic equation [tex]\(x^2 - 6x + 9 = 0\)[/tex], we can use the method of factoring or completing the square. Let's solve it step-by-step:

1. Identify the Equation Form:
The given equation is in the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex], where:
- [tex]\(a = 1\)[/tex]
- [tex]\(b = -6\)[/tex]
- [tex]\(c = 9\)[/tex]

2. Factor the Quadratic:
Notice that the expression can be written as a perfect square. The term [tex]\(x^2 - 6x + 9\)[/tex] can be expressed as [tex]\((x - 3)^2\)[/tex].

3. Rewrite the Equation:
The equation [tex]\(x^2 - 6x + 9 = 0\)[/tex] can be rewritten as:
[tex]\((x - 3)^2 = 0\)[/tex]

4. Solve for x:
If [tex]\((x - 3)^2 = 0\)[/tex], then [tex]\(x - 3 = 0\)[/tex]. Solving this gives:
[tex]\[
x = 3
\][/tex]

5. Conclusion:
Therefore, the solution to the equation is [tex]\(x = 3\)[/tex].

So the correct answer is:
A) [tex]\(x = 3\)[/tex]