High School

Solve the equation:

[tex]\log_5 3125 = x[/tex]

A. [tex]\{5\}[/tex]

B. [tex]\{625\}[/tex]

C. [tex]\{15,625\}[/tex]

D. [tex]\{3130\}[/tex]

Answer :

To solve the equation

[tex]$$
\log_5 3125 = x,
$$[/tex]

we are looking for the exponent [tex]$x$[/tex] such that

[tex]$$
5^x = 3125.
$$[/tex]

Notice that [tex]$3125$[/tex] is a power of [tex]$5$[/tex]. In fact,

[tex]$$
3125 = 5^5.
$$[/tex]

Since the base and the exponent match, we have

[tex]$$
5^x = 5^5.
$$[/tex]

By comparing the exponents, we obtain

[tex]$$
x = 5.
$$[/tex]

Thus, the solution is [tex]$\{5\}$[/tex], which corresponds to option A.