High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Solve [tex]|x-6|+3=16[/tex].

A. [tex]x=19, 7[/tex]
B. [tex]x=19, -7[/tex]
C. [tex]x=19, -19[/tex]
D. [tex]x=19[/tex]

Answer :

We are given the equation
[tex]$$
|x-6| + 3 = 16.
$$[/tex]

Step 1. Isolate the absolute value

Subtract 3 from both sides:
[tex]$$
|x-6| = 16 - 3 = 13.
$$[/tex]

Step 2. Split into two cases

The definition of absolute value tells us that if
[tex]$$
|A| = B \quad (\text{with } B \ge 0),
$$[/tex]
then
[tex]$$
A = B \quad \text{or} \quad A = -B.
$$[/tex]

Here, with [tex]$A = x-6$[/tex] and [tex]$B = 13$[/tex], we have:
[tex]\[
\begin{cases}
x - 6 = 13, \\
x - 6 = -13.
\end{cases}
\][/tex]

Step 3. Solve both equations

1. For the first case:
[tex]$$
x - 6 = 13 \quad \Longrightarrow \quad x = 13 + 6 = 19.
$$[/tex]
2. For the second case:
[tex]$$
x - 6 = -13 \quad \Longrightarrow \quad x = -13 + 6 = -7.
$$[/tex]

Final Answer

The solutions are:
[tex]$$
x = 19 \quad \text{or} \quad x = -7.
$$[/tex]

Thus, the answer is [tex]$x = 19, -7$[/tex].