Answer :
We start with the equation
[tex]$$
7 + \frac{2}{5} x = 1.
$$[/tex]
Step 1: Isolate the [tex]$x$[/tex] term.
Subtract [tex]$7$[/tex] from both sides of the equation:
[tex]$$
7 + \frac{2}{5} x - 7 = 1 - 7.
$$[/tex]
This simplifies to:
[tex]$$
\frac{2}{5} x = -6.
$$[/tex]
Step 2: Solve for [tex]$x$[/tex].
To remove the fraction, multiply both sides of the equation by the reciprocal of [tex]$\frac{2}{5}$[/tex], which is [tex]$\frac{5}{2}$[/tex]:
[tex]$$
x = -6 \times \frac{5}{2}.
$$[/tex]
Multiply the numbers:
[tex]$$
x = -15.
$$[/tex]
Thus, the solution of the equation is [tex]$\boxed{-15}$[/tex].
[tex]$$
7 + \frac{2}{5} x = 1.
$$[/tex]
Step 1: Isolate the [tex]$x$[/tex] term.
Subtract [tex]$7$[/tex] from both sides of the equation:
[tex]$$
7 + \frac{2}{5} x - 7 = 1 - 7.
$$[/tex]
This simplifies to:
[tex]$$
\frac{2}{5} x = -6.
$$[/tex]
Step 2: Solve for [tex]$x$[/tex].
To remove the fraction, multiply both sides of the equation by the reciprocal of [tex]$\frac{2}{5}$[/tex], which is [tex]$\frac{5}{2}$[/tex]:
[tex]$$
x = -6 \times \frac{5}{2}.
$$[/tex]
Multiply the numbers:
[tex]$$
x = -15.
$$[/tex]
Thus, the solution of the equation is [tex]$\boxed{-15}$[/tex].