Answer :
Certainly! Let's solve the equation [tex]\(5a^2 = 980\)[/tex] following a step-by-step approach.
1. Start with the given equation:
[tex]\[
5a^2 = 980
\][/tex]
2. Divide both sides by 5 to isolate [tex]\(a^2\)[/tex]:
[tex]\[
a^2 = \frac{980}{5}
\][/tex]
[tex]\[
a^2 = 196
\][/tex]
3. Find the square roots of [tex]\(a^2 = 196\)[/tex]:
When we solve for [tex]\(a\)[/tex] by taking the square root, we consider both the positive and negative solutions:
[tex]\[
a = \sqrt{196} \quad \text{and} \quad a = -\sqrt{196}
\][/tex]
4. Calculate the square roots:
[tex]\[
a = 14 \quad \text{and} \quad a = -14
\][/tex]
So, the solutions for [tex]\(a\)[/tex] are [tex]\(14\)[/tex] and [tex]\(-14\)[/tex].
1. Start with the given equation:
[tex]\[
5a^2 = 980
\][/tex]
2. Divide both sides by 5 to isolate [tex]\(a^2\)[/tex]:
[tex]\[
a^2 = \frac{980}{5}
\][/tex]
[tex]\[
a^2 = 196
\][/tex]
3. Find the square roots of [tex]\(a^2 = 196\)[/tex]:
When we solve for [tex]\(a\)[/tex] by taking the square root, we consider both the positive and negative solutions:
[tex]\[
a = \sqrt{196} \quad \text{and} \quad a = -\sqrt{196}
\][/tex]
4. Calculate the square roots:
[tex]\[
a = 14 \quad \text{and} \quad a = -14
\][/tex]
So, the solutions for [tex]\(a\)[/tex] are [tex]\(14\)[/tex] and [tex]\(-14\)[/tex].