Answer :
Sure, let's solve the equations step by step:
a. Equation: [tex]\( 25 - 3x = 40 \)[/tex]
1. Subtract 25 from both sides:
[tex]\[
-3x = 40 - 25
\][/tex]
2. Simplify the right side:
[tex]\[
-3x = 15
\][/tex]
3. Divide both sides by -3 to solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{15}{-3}
\][/tex]
4. Calculate the value of [tex]\( x \)[/tex]:
[tex]\[
x = -5
\][/tex]
The solution for part a is [tex]\( x = -5 \)[/tex].
b. Equation: [tex]\(\frac{1}{3}(x - 10) = -4\)[/tex]
1. Multiply both sides by 3 to eliminate the fraction:
[tex]\[
x - 10 = -4 \times 3
\][/tex]
2. Simplify the right side:
[tex]\[
x - 10 = -12
\][/tex]
3. Add 10 to both sides to solve for [tex]\( x \)[/tex]:
[tex]\[
x = -12 + 10
\][/tex]
4. Calculate the value of [tex]\( x \)[/tex]:
[tex]\[
x = -2
\][/tex]
The solution for part b is [tex]\( x = -2 \)[/tex].
So, the solutions are [tex]\( x = -5 \)[/tex] for part a and [tex]\( x = -2 \)[/tex] for part b.
a. Equation: [tex]\( 25 - 3x = 40 \)[/tex]
1. Subtract 25 from both sides:
[tex]\[
-3x = 40 - 25
\][/tex]
2. Simplify the right side:
[tex]\[
-3x = 15
\][/tex]
3. Divide both sides by -3 to solve for [tex]\( x \)[/tex]:
[tex]\[
x = \frac{15}{-3}
\][/tex]
4. Calculate the value of [tex]\( x \)[/tex]:
[tex]\[
x = -5
\][/tex]
The solution for part a is [tex]\( x = -5 \)[/tex].
b. Equation: [tex]\(\frac{1}{3}(x - 10) = -4\)[/tex]
1. Multiply both sides by 3 to eliminate the fraction:
[tex]\[
x - 10 = -4 \times 3
\][/tex]
2. Simplify the right side:
[tex]\[
x - 10 = -12
\][/tex]
3. Add 10 to both sides to solve for [tex]\( x \)[/tex]:
[tex]\[
x = -12 + 10
\][/tex]
4. Calculate the value of [tex]\( x \)[/tex]:
[tex]\[
x = -2
\][/tex]
The solution for part b is [tex]\( x = -2 \)[/tex].
So, the solutions are [tex]\( x = -5 \)[/tex] for part a and [tex]\( x = -2 \)[/tex] for part b.