High School

Solution:

(i) Since the vapor pressure of [tex]$H_2O$[/tex] decreases by 25%, we have:

[tex]\frac{p_{\text{solv}}^0 - p_{\text{soln}}}{p_{\text{solv}}^0} = \frac{100 - 75}{100} = \frac{25}{100} = \frac{1}{4}[/tex]

Therefore,

[tex]\frac{1}{4} = \frac{m_{\text{solute}} / M_{\text{solute}}}{m_{\text{solute}} / M_{\text{solute}} + m_{\text{solv}} / M_{\text{solv}}}[/tex]

or

[tex]\frac{1}{4} = \frac{m_{\text{urea}} / M_{\text{urea}}}{m_{\text{urea}} / M_{\text{urea}} + m_{H_2O} / M_{H_2O}}[/tex]

[tex]4 = \frac{m_{\text{urea}} / M_{\text{urea}} + m_{H_2O} / M_{H_2O}}{m_{\text{urea}} / M_{\text{urea}}}[/tex]

or

[tex]4 = 1 + \frac{m_{H_2O} / M_{H_2O}}{m_{\text{urea}} / M_{\text{urea}}}[/tex]

[tex]4 = 1 + \frac{100 / 18}{m_{\text{urea}} / 60}[/tex]

or

[tex]4 - 1 = \frac{100}{18} \times \frac{60}{m_{\text{urea}}}[/tex]

or

[tex]m_{\text{urea}} = \frac{6000}{3 \times 18} = 111 \text{ g}[/tex]

(ii) 111 g of urea are needed to be dissolved in 100 g of water.

Molality of urea:

[tex]\text{Molality of urea} = \frac{\text{No. of moles of urea}}{\text{Mass of water in kg}} = \frac{111 / 60}{100 / 1000} \text{ mol kg}^{-1}[/tex]

[tex]= \frac{111 \times 1000}{60 \times 100} = 18.5 \text{ mol kg}^{-1}[/tex]

Answer :

Sure! Let's go through the solution step-by-step to understand how to calculate the mass of urea needed and the molality of the solution.

### Step 1: Understanding the Vapour Pressure Decrease

The problem states that the vapor pressure of water decreases by 25%. This indicates that the vapor pressure of the solution is 75% of the pure solvent's vapor pressure. Using Raoult's law, we can express this as:

[tex]\[
\frac{p_{\text{solv}}^0 - p_{\text{soln}}}{p_{\text{solv}}^0} = \frac{1}{4}
\][/tex]

Where:
- [tex]\( p_{\text{solv}}^0 \)[/tex] is the vapor pressure of the pure solvent (water).
- [tex]\( p_{\text{soln}} \)[/tex] is the vapor pressure of the solution.

### Step 2: Setting up the Equations

Based on Raoult's law, the above expression can be rewritten as:

[tex]\[
\frac{1}{4} = \frac{m_{\text{urea}} / M_{\text{urea}}}{(m_{\text{urea}} / M_{\text{urea}}) + (m_{\text{water}} / M_{\text{water}})}
\][/tex]

Rearranging the equation to solve for the mass of urea:

[tex]\[
4 = 1 + \frac{m_{\text{water}} / M_{\text{water}}}{m_{\text{urea}} / M_{\text{urea}}}
\][/tex]

Which simplifies to:

[tex]\[
3 = \frac{m_{\text{water}}}{M_{\text{water}}} \times \frac{M_{\text{urea}}}{m_{\text{urea}}}
\][/tex]

### Step 3: Solving for the Mass of Urea

Given:
- [tex]\( m_{\text{water}} = 100 \)[/tex] grams
- [tex]\( M_{\text{urea}} = 60 \)[/tex] g/mol
- [tex]\( M_{\text{water}} = 18 \)[/tex] g/mol

We can solve for [tex]\( m_{\text{urea}} \)[/tex]:

[tex]\[
m_{\text{urea}} = \frac{m_{\text{water}} \times M_{\text{urea}}}{M_{\text{water}} \times 3} = \frac{100 \times 60}{18 \times 3} = 111.11 \, \text{grams}
\][/tex]

### Step 4: Calculating the Molality of the Solution

Molality is defined as the moles of solute per kilogram of solvent:

[tex]\[
\text{Molality of urea} = \frac{m_{\text{urea}} / M_{\text{urea}}}{m_{\text{water}} / 1000}
\][/tex]

Substituting the known values:

[tex]\[
\text{Molality of urea} = \frac{111.11 / 60}{100 / 1000} = 18.52 \, \text{mol/kg}
\][/tex]

### Conclusion

Therefore, to achieve a 25% decrease in the vapor pressure of water, you would need to dissolve approximately 111.11 grams of urea in 100 grams of water, resulting in a molality of approximately 18.52 mol/kg.