College

Since [tex]n(C) = 156[/tex], then

[tex]\[ c + 52 - x + x + 60 - x = 156 \][/tex]

Solve for [tex]c[/tex].

Answer :

We start with the equation:

[tex]$$
c + 52 - x + x + 60 - x = 156.
$$[/tex]

Step 1. Combine like terms

Look at the terms:
- The constant terms are [tex]$52$[/tex] and [tex]$60$[/tex]. Their sum is:
[tex]$$
52 + 60 = 112.
$$[/tex]
- The terms involving [tex]$x$[/tex] are [tex]$-x$[/tex], [tex]$+x$[/tex], and [tex]$-x$[/tex]. Adding these together gives:
[tex]$$
-x + x - x = -x.
$$[/tex]

Replacing the grouped terms, the equation becomes:

[tex]$$
c + 112 - x = 156.
$$[/tex]

Step 2. Isolate [tex]$c$[/tex]

To solve for [tex]$c$[/tex], we can rearrange the equation. Add [tex]$x$[/tex] to both sides:

[tex]$$
c + 112 = 156 + x.
$$[/tex]

Now subtract [tex]$112$[/tex] from both sides to isolate [tex]$c$[/tex]:

[tex]$$
c = 156 + x - 112.
$$[/tex]

Simplify the constant terms:

[tex]$$
c = x + 44.
$$[/tex]

Final Answer

The value of [tex]$c$[/tex] is:

[tex]$$
\boxed{x + 44}.
$$[/tex]