College

Simplify this expression:

[tex]2x^3\left(5x^3-7\right)[/tex]

A. [tex]10x^6-7[/tex]

B. [tex]10x^6-14x^3[/tex]

C. [tex]10x^9-7[/tex]

D. [tex]10x^9-14x^3[/tex]

Answer :

We begin with the expression

$$
2x^3(5x^3 - 7).
$$

Step 1: Distribute \( 2x^3 \) across the terms inside the parentheses. This gives:

$$
2x^3(5x^3) - 2x^3(7).
$$

Step 2: Multiply the coefficients and add the exponents of like bases for the first term:

$$
2 \cdot 5 = 10,
$$

and since

$$
x^3 \cdot x^3 = x^{3+3} = x^6,
$$

the first term becomes:

$$
10x^6.
$$

Step 3: Multiply the second term:

$$
2x^3 \cdot 7 = 14x^3,
$$

and since it is subtracted, the second term is:

$$
-14x^3.
$$

Step 4: Putting it all together, the simplified expression is:

$$
10x^6 - 14x^3.
$$

So, the correct answer is:

$$
\boxed{10x^6 - 14x^3}.
$$