College

Simplify this expression:

[tex]\[ 2x^3(5x^3 - 7) \][/tex]

A. [tex]\[ 10x^6 - 7 \][/tex]

B. [tex]\[ 10x^6 - 14x^3 \][/tex]

C. [tex]\[ 10x^9 - 7 \][/tex]

D. [tex]\[ 10x^9 - 14x^3 \][/tex]

Answer :

Certainly! Let's simplify the expression step-by-step:

We need to simplify [tex]\(2x^3(5x^3 - 7)\)[/tex].

1. Distribute [tex]\(2x^3\)[/tex] to each term inside the parentheses:
- Multiply [tex]\(2x^3\)[/tex] by [tex]\(5x^3\)[/tex]:
[tex]\[
2x^3 \times 5x^3 = 10x^{(3+3)} = 10x^6
\][/tex]

- Multiply [tex]\(2x^3\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
2x^3 \times -7 = -14x^3
\][/tex]

2. Combine the results:
- The expression after distribution becomes:
[tex]\[
10x^6 - 14x^3
\][/tex]

So, the simplified expression is [tex]\(10x^6 - 14x^3\)[/tex]. The correct answer is B. [tex]\(10x^6 - 14x^3\)[/tex].