College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the following polynomial expression:

[tex]\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-4x^3 + 5x - 1\right)(2x - 7)[/tex]

A. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 6[/tex]

B. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 8[/tex]

C. [tex]5x^4 - 37x^3 - 6x^2 + 41x - 6[/tex]

D. [tex]11x^4 - 21x^3 + 14x^2 + 33x - 8[/tex]

Answer :

To simplify the given polynomial expression, we need to follow a series of steps. Let's break it down:

1. Identify the expressions:
We have three polynomial expressions that we need to work with:
- [tex]\( (5x^4 - 9x^3 + 7x - 1) \)[/tex]
- [tex]\( (-8x^4 + 4x^2 - 3x + 2) \)[/tex]
- [tex]\( (-4x^3 + 5x - 1)(2x - 7) \)[/tex]

2. Simplify by handling operations in correct order:

- Multiply the third expression:
We need to distribute the terms in the expression [tex]\((-4x^3 + 5x - 1)(2x - 7)\)[/tex] using the distributive property (FOIL method):
[tex]\[
\begin{align*}
(-4x^3 + 5x - 1)(2x - 7) &= (-4x^3)(2x) + (-4x^3)(-7) + (5x)(2x) + (5x)(-7) + (-1)(2x) + (-1)(-7) \\
&= -8x^4 + 28x^3 + 10x^2 - 35x - 2x + 7
\end{align*}
\][/tex]
Combine like terms:
[tex]\[
-8x^4 + 28x^3 + 10x^2 - 37x + 7
\][/tex]

- Add/Subtract the expressions:
Next, we combine the original expressions, making sure to subtract the expanded third expression from the sum of the first two:

[tex]\[
\left(5x^4 - 9x^3 + 7x - 1\right) + \left(-8x^4 + 4x^2 - 3x + 2\right) - \left(-8x^4 + 28x^3 + 10x^2 - 37x + 7\right)
\][/tex]

3. Combine the expressions:
Let's now combine the expressions by adding and subtracting like terms:

- Combine the [tex]\(x^4\)[/tex] terms: [tex]\(5x^4 - 8x^4 + 8x^4 = 5x^4\)[/tex]
- Combine the [tex]\(x^3\)[/tex] terms: [tex]\(-9x^3 - 28x^3 = -37x^3\)[/tex]
- Combine the [tex]\(x^2\)[/tex] terms: [tex]\(4x^2 - 10x^2 = -6x^2\)[/tex]
- Combine the [tex]\(x\)[/tex] terms: [tex]\(7x - 3x + 37x = 41x\)[/tex]
- Combine the constant terms: [tex]\(-1 + 2 - 7 = -6\)[/tex]

The simplified expression is:
[tex]\[
5x^4 - 37x^3 - 6x^2 + 41x - 6
\][/tex]

4. Selecting the correct answer:
The expression [tex]\(5x^4 - 37x^3 - 6x^2 + 41x - 6\)[/tex] matches option C.

Therefore, the correct simplified expression is:
C. [tex]\(5x^4 - 37x^3 - 6x^2 + 41x - 6\)[/tex]