College

Simplify the following fractions:

1. [tex]\(\frac{9}{12} =\)[/tex]

2. [tex]\(\frac{18}{20} =\)[/tex]

3. [tex]\(\frac{10}{15} =\)[/tex]

4. [tex]\(\frac{9}{18} =\)[/tex]

Answer :

Sure! Let's simplify each fraction step-by-step:

1. Simplifying [tex]\( \frac{9}{12} \)[/tex]:
- Find the greatest common divisor (GCD) of 9 and 12. The GCD is 3.
- Divide both the numerator and the denominator by 3:
- [tex]\( \frac{9}{3} = 3 \)[/tex]
- [tex]\( \frac{12}{3} = 4 \)[/tex]
- So, [tex]\( \frac{9}{12} \)[/tex] simplifies to [tex]\( \frac{3}{4} \)[/tex].

2. Simplifying [tex]\( \frac{18}{20} \)[/tex]:
- Find the GCD of 18 and 20. The GCD is 2.
- Divide both the numerator and the denominator by 2:
- [tex]\( \frac{18}{2} = 9 \)[/tex]
- [tex]\( \frac{20}{2} = 10 \)[/tex]
- So, [tex]\( \frac{18}{20} \)[/tex] simplifies to [tex]\( \frac{9}{10} \)[/tex].

3. Simplifying [tex]\( \frac{10}{15} \)[/tex]:
- Find the GCD of 10 and 15. The GCD is 5.
- Divide both the numerator and the denominator by 5:
- [tex]\( \frac{10}{5} = 2 \)[/tex]
- [tex]\( \frac{15}{5} = 3 \)[/tex]
- So, [tex]\( \frac{10}{15} \)[/tex] simplifies to [tex]\( \frac{2}{3} \)[/tex].

4. Simplifying [tex]\( \frac{9}{18} \)[/tex]:
- Find the GCD of 9 and 18. The GCD is 9.
- Divide both the numerator and the denominator by 9:
- [tex]\( \frac{9}{9} = 1 \)[/tex]
- [tex]\( \frac{18}{9} = 2 \)[/tex]
- So, [tex]\( \frac{9}{18} \)[/tex] simplifies to [tex]\( \frac{1}{2} \)[/tex].

Here are the simplified fractions:
- [tex]\( \frac{9}{12} = \frac{3}{4} \)[/tex]
- [tex]\( \frac{18}{20} = \frac{9}{10} \)[/tex]
- [tex]\( \frac{10}{15} = \frac{2}{3} \)[/tex]
- [tex]\( \frac{9}{18} = \frac{1}{2} \)[/tex]

I hope this makes simplifying fractions clear! If you have any more questions, feel free to ask.