Answer :
To simplify the expression [tex]\((5x^2 + 8x + 17)(5x^2 + 9x + 17)\)[/tex], we can use the distributive property (also known as the FOIL method for binomials) to expand this product step-by-step.
### Step-by-Step Expansion:
1. Multiply the First Terms:
[tex]\[
5x^2 \times 5x^2 = 25x^4
\][/tex]
2. Multiply the Outer Terms:
[tex]\[
5x^2 \times 9x = 45x^3
\][/tex]
3. Multiply the Inner Terms:
[tex]\[
8x \times 5x^2 = 40x^3
\][/tex]
4. Multiply the Last Terms:
[tex]\[
8x \times 9x = 72x^2
\][/tex]
5. Multiply the First Inner Terms and First Last Terms:
[tex]\[
5x^2 \times 17 = 85x^2
\][/tex]
6. Multiply the Outer Last Terms:
[tex]\[
8x \times 17 = 136x
\][/tex]
7. Multiply the First and Second Constant Terms:
[tex]\[
17 \times 17 = 289
\][/tex]
### Combine Like Terms:
- The [tex]\(x^4\)[/tex] term: [tex]\(25x^4\)[/tex].
- The [tex]\(x^3\)[/tex] terms: [tex]\(45x^3 + 40x^3 = 85x^3\)[/tex].
- The [tex]\(x^2\)[/tex] terms: [tex]\(72x^2 + 85x^2 = 157x^2\)[/tex].
- The [tex]\(x\)[/tex] term: [tex]\(136x\)[/tex].
- The constant term: [tex]\(289\)[/tex].
### Final Simplified Expression:
Combining all these terms, we get:
[tex]\[
25x^4 + 85x^3 + 157x^2 + 136x + 289
\][/tex]
Thus, the correct answer is:
C. [tex]\(25x^4 + 85x^3 + 157x^2 + 136x + 289\)[/tex]
### Step-by-Step Expansion:
1. Multiply the First Terms:
[tex]\[
5x^2 \times 5x^2 = 25x^4
\][/tex]
2. Multiply the Outer Terms:
[tex]\[
5x^2 \times 9x = 45x^3
\][/tex]
3. Multiply the Inner Terms:
[tex]\[
8x \times 5x^2 = 40x^3
\][/tex]
4. Multiply the Last Terms:
[tex]\[
8x \times 9x = 72x^2
\][/tex]
5. Multiply the First Inner Terms and First Last Terms:
[tex]\[
5x^2 \times 17 = 85x^2
\][/tex]
6. Multiply the Outer Last Terms:
[tex]\[
8x \times 17 = 136x
\][/tex]
7. Multiply the First and Second Constant Terms:
[tex]\[
17 \times 17 = 289
\][/tex]
### Combine Like Terms:
- The [tex]\(x^4\)[/tex] term: [tex]\(25x^4\)[/tex].
- The [tex]\(x^3\)[/tex] terms: [tex]\(45x^3 + 40x^3 = 85x^3\)[/tex].
- The [tex]\(x^2\)[/tex] terms: [tex]\(72x^2 + 85x^2 = 157x^2\)[/tex].
- The [tex]\(x\)[/tex] term: [tex]\(136x\)[/tex].
- The constant term: [tex]\(289\)[/tex].
### Final Simplified Expression:
Combining all these terms, we get:
[tex]\[
25x^4 + 85x^3 + 157x^2 + 136x + 289
\][/tex]
Thus, the correct answer is:
C. [tex]\(25x^4 + 85x^3 + 157x^2 + 136x + 289\)[/tex]