College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression: [tex]\frac{6-2i}{4+i}[/tex]

a.) [tex]\frac{26}{15}-\frac{14}{15}i[/tex]
b.) [tex]\frac{22}{17}-\frac{14}{17}i[/tex]
c.) [tex]\frac{26}{17}-\frac{14}{17}i[/tex]
d.) [tex]\frac{22}{15}-\frac{14}{15}i[/tex]

Answer :

To solve the problem of dividing the complex numbers [tex]\((6 - 2i)\)[/tex] by [tex]\((4 + i)\)[/tex], you can follow these steps:

1. Identify the Numbers:
- The numerator is [tex]\(6 - 2i\)[/tex].
- The denominator is [tex]\(4 + i\)[/tex].

2. Multiply by the Conjugate:
- Multiply both the numerator and the denominator by the conjugate of the denominator, which is [tex]\(4 - i\)[/tex]. This will help eliminate the imaginary part in the denominator.

3. Perform the Multiplication:
- The conjugate of [tex]\(4 + i\)[/tex] is [tex]\(4 - i\)[/tex].
- Multiply:
[tex]\((6 - 2i) \times (4 - i) = (6 \times 4) + (6 \times -i) + (-2i \times 4) + (-2i \times -i)\)[/tex].
- Simplify:
[tex]\(= 24 - 6i - 8i + 2i^2\)[/tex].
Remember that [tex]\(i^2 = -1\)[/tex], so [tex]\(2i^2 = 2(-1) = -2\)[/tex].
- Further Simplify:
[tex]\(= 24 - 6i - 8i - 2 = 22 - 14i\)[/tex].

4. Simplify the Denominator:
- Calculate: [tex]\((4 + i) \times (4 - i) = 4^2 - i^2\)[/tex].
- [tex]\(= 16 - (-1) = 16 + 1 = 17\)[/tex].

5. Combine the Results:
- Now, place the results over each other:
[tex]\(\frac{(22 - 14i)}{17}\)[/tex].

6. Separate into Real and Imaginary Parts:
- Real part: [tex]\(\frac{22}{17}\)[/tex].
- Imaginary part: [tex]\(-\frac{14}{17}i\)[/tex].

Thus, the final answer is:
[tex]\[
\frac{22}{17} - \frac{14}{17}i
\][/tex]

Comparing this with the given options, it matches with option b.) [tex]\(\frac{22}{17} - \frac{14}{17}i\)[/tex].