Answer :
To solve the expression [tex]\(\frac{18}{20} \cdot \frac{50}{45}\)[/tex], we'll multiply the fractions step by step and simplify the result.
Step 1: Multiply the Numerators
- Take the numerators of both fractions: 18 and 50.
- Multiply them:
[tex]\[
18 \times 50 = 900
\][/tex]
Step 2: Multiply the Denominators
- Take the denominators of both fractions: 20 and 45.
- Multiply them:
[tex]\[
20 \times 45 = 900
\][/tex]
Step 3: Form the New Fraction
- After multiplying the numerators and denominators, the new fraction is:
[tex]\[
\frac{900}{900}
\][/tex]
Step 4: Simplify the Fraction
- Divide the numerator by the denominator to simplify the fraction:
[tex]\[
\frac{900}{900} = 1
\][/tex]
So, the result of [tex]\(\frac{18}{20} \cdot \frac{50}{45}\)[/tex] is 1.0.
Step 1: Multiply the Numerators
- Take the numerators of both fractions: 18 and 50.
- Multiply them:
[tex]\[
18 \times 50 = 900
\][/tex]
Step 2: Multiply the Denominators
- Take the denominators of both fractions: 20 and 45.
- Multiply them:
[tex]\[
20 \times 45 = 900
\][/tex]
Step 3: Form the New Fraction
- After multiplying the numerators and denominators, the new fraction is:
[tex]\[
\frac{900}{900}
\][/tex]
Step 4: Simplify the Fraction
- Divide the numerator by the denominator to simplify the fraction:
[tex]\[
\frac{900}{900} = 1
\][/tex]
So, the result of [tex]\(\frac{18}{20} \cdot \frac{50}{45}\)[/tex] is 1.0.