Answer :
Let's simplify the expression [tex]\( 7 x^6(6 x + 8 x^3) \)[/tex] step-by-step.
1. Distribute [tex]\( 7 x^6 \)[/tex] inside the parentheses:
The expression inside the parentheses is [tex]\( (6 x + 8 x^3) \)[/tex]. We need to multiply each term inside the parentheses by [tex]\( 7 x^6 \)[/tex].
2. Multiply the first term:
[tex]\[
7 x^6 \times 6 x = 42 x^{6+1} = 42 x^7
\][/tex]
3. Multiply the second term:
[tex]\[
7 x^6 \times 8 x^3 = 56 x^{6+3} = 56 x^9
\][/tex]
4. Combine the results:
The expression becomes:
[tex]\[
56 x^9 + 42 x^7
\][/tex]
So, the simplified version of the given expression is [tex]\( 56 x^9 + 42 x^7 \)[/tex].
1. Distribute [tex]\( 7 x^6 \)[/tex] inside the parentheses:
The expression inside the parentheses is [tex]\( (6 x + 8 x^3) \)[/tex]. We need to multiply each term inside the parentheses by [tex]\( 7 x^6 \)[/tex].
2. Multiply the first term:
[tex]\[
7 x^6 \times 6 x = 42 x^{6+1} = 42 x^7
\][/tex]
3. Multiply the second term:
[tex]\[
7 x^6 \times 8 x^3 = 56 x^{6+3} = 56 x^9
\][/tex]
4. Combine the results:
The expression becomes:
[tex]\[
56 x^9 + 42 x^7
\][/tex]
So, the simplified version of the given expression is [tex]\( 56 x^9 + 42 x^7 \)[/tex].