Answer :
Sure! Let's solve the expression [tex]\((7x^2 + 5x + 7)(4x - 6)\)[/tex] by using the distributive property, also known as the FOIL method for multiplying polynomials. Here's how you can do it step by step:
1. Distribute each term in [tex]\((4x - 6)\)[/tex] with each term in [tex]\((7x^2 + 5x + 7)\)[/tex]:
- Multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(7x^2 \times 4x = 28x^3\)[/tex]
- [tex]\(7x^2 \times -6 = -42x^2\)[/tex]
- Multiply [tex]\(5x\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(5x \times 4x = 20x^2\)[/tex]
- [tex]\(5x \times -6 = -30x\)[/tex]
- Multiply [tex]\(7\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(7 \times 4x = 28x\)[/tex]
- [tex]\(7 \times -6 = -42\)[/tex]
2. Combine all the terms:
- [tex]\(28x^3\)[/tex]
- [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex]
- [tex]\(-30x + 28x = -2x\)[/tex]
- [tex]\(-42\)[/tex]
3. Write the final polynomial expression by combining all like terms:
[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]
Therefore, the answer is D. [tex]\(28x^3 - 22x^2 - 2x - 42\)[/tex].
1. Distribute each term in [tex]\((4x - 6)\)[/tex] with each term in [tex]\((7x^2 + 5x + 7)\)[/tex]:
- Multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(7x^2 \times 4x = 28x^3\)[/tex]
- [tex]\(7x^2 \times -6 = -42x^2\)[/tex]
- Multiply [tex]\(5x\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(5x \times 4x = 20x^2\)[/tex]
- [tex]\(5x \times -6 = -30x\)[/tex]
- Multiply [tex]\(7\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(7 \times 4x = 28x\)[/tex]
- [tex]\(7 \times -6 = -42\)[/tex]
2. Combine all the terms:
- [tex]\(28x^3\)[/tex]
- [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex]
- [tex]\(-30x + 28x = -2x\)[/tex]
- [tex]\(-42\)[/tex]
3. Write the final polynomial expression by combining all like terms:
[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]
Therefore, the answer is D. [tex]\(28x^3 - 22x^2 - 2x - 42\)[/tex].