College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression:

[tex](7x^2 + 5x + 7)(4x - 6)[/tex]

A. [tex]28x^3 - 62x^2 - 2x - 42[/tex]
B. [tex]28x^3 - 22x^2 - 58x - 42[/tex]
C. [tex]28x^3 - 22x^2 - 2x + 42[/tex]
D. [tex]28x^3 - 22x^2 - 2x - 42[/tex]

Answer :

Sure! Let's solve the expression [tex]\((7x^2 + 5x + 7)(4x - 6)\)[/tex] by using the distributive property, also known as the FOIL method for multiplying polynomials. Here's how you can do it step by step:

1. Distribute each term in [tex]\((4x - 6)\)[/tex] with each term in [tex]\((7x^2 + 5x + 7)\)[/tex]:

- Multiply [tex]\(7x^2\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(7x^2 \times 4x = 28x^3\)[/tex]
- [tex]\(7x^2 \times -6 = -42x^2\)[/tex]

- Multiply [tex]\(5x\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(5x \times 4x = 20x^2\)[/tex]
- [tex]\(5x \times -6 = -30x\)[/tex]

- Multiply [tex]\(7\)[/tex] by each term in [tex]\(4x - 6\)[/tex]:
- [tex]\(7 \times 4x = 28x\)[/tex]
- [tex]\(7 \times -6 = -42\)[/tex]

2. Combine all the terms:
- [tex]\(28x^3\)[/tex]
- [tex]\(-42x^2 + 20x^2 = -22x^2\)[/tex]
- [tex]\(-30x + 28x = -2x\)[/tex]
- [tex]\(-42\)[/tex]

3. Write the final polynomial expression by combining all like terms:
[tex]\[
28x^3 - 22x^2 - 2x - 42
\][/tex]

Therefore, the answer is D. [tex]\(28x^3 - 22x^2 - 2x - 42\)[/tex].