College

Simplify the expression:

[tex]6(5r - 11) - (5 - r)[/tex]

Which of the following is equivalent to the given expression?

Choose one answer:

A. [tex]30r - 71[/tex]

B. [tex]31r - 71[/tex]

C. [tex]29r - 71[/tex]

D. [tex]31r - 61[/tex]

Answer :

Sure! Let's simplify the expression step by step:

Given expression:
[tex]\[ 6(5r - 11) - (5 - r) \][/tex]

1. Distribute the 6 in the first term:
Multiply 6 with each term inside the parentheses:
[tex]\[ 6 \times 5r = 30r \][/tex]
[tex]\[ 6 \times (-11) = -66 \][/tex]

So, the first part becomes:
[tex]\[ 30r - 66 \][/tex]

2. Distribute the minus sign in the second term:
Distribute the negative sign across the terms in the parentheses:
[tex]\[ -(5) = -5 \][/tex]
[tex]\[ -(-r) = +r \][/tex]

So, the second part becomes:
[tex]\[ -5 + r \][/tex]

3. Combine like terms:
Now, combine all terms:
[tex]\[ (30r - 66) + (-5 + r) \][/tex]

Combine the 'r' terms:
[tex]\[ 30r + r = 31r \][/tex]

Combine the constant terms:
[tex]\[ -66 - 5 = -71 \][/tex]

So, the simplified expression is:
[tex]\[ 31r - 71 \][/tex]

Therefore, the equivalent expression to [tex]\[ 6(5r - 11) - (5 - r) \][/tex] is [tex]\[ 31r - 71 \][/tex].

The correct answer choice is (B) [tex]\( 31r - 71 \)[/tex].