College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression [tex](4x^2 + 7x)(5x^2 - 3x)[/tex].

A. [tex]20x^4 + 35x^2 - 21x[/tex]
B. [tex]20x^4 + 23x^3 - 21x^2[/tex]
C. [tex]20x^4 + 23x^2 - 21x[/tex]
D. [tex]20x^4 + 35x^3 - 21x^2[/tex]

Answer :

To solve the problem [tex]\((4x^2 + 7x)(5x^2 - 3x)\)[/tex], we need to expand the expression using the distributive property, also known as the FOIL method, which stands for First, Outer, Inner, and Last terms.

Here's how it works:

1. First: Multiply the first terms in each binomial:
[tex]\[
4x^2 \cdot 5x^2 = 20x^4
\][/tex]

2. Outer: Multiply the outer terms:
[tex]\[
4x^2 \cdot (-3x) = -12x^3
\][/tex]

3. Inner: Multiply the inner terms:
[tex]\[
7x \cdot 5x^2 = 35x^3
\][/tex]

4. Last: Multiply the last terms:
[tex]\[
7x \cdot (-3x) = -21x^2
\][/tex]

Next, we combine all these results together:

[tex]\[
20x^4 + (-12x^3) + 35x^3 - 21x^2
\][/tex]

Now, combine the like terms:

- Combine the [tex]\(x^3\)[/tex] terms:
[tex]\[
-12x^3 + 35x^3 = 23x^3
\][/tex]

Putting it all together, we get the final expanded expression:

[tex]\[
20x^4 + 23x^3 - 21x^2
\][/tex]

Therefore, the correct answer is B. [tex]\(20x^4 + 23x^3 - 21x^2\)[/tex].