Answer :
Let's simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex] step by step.
1. Distribute the [tex]\(-4x^2\)[/tex] across the terms inside the parentheses [tex]\(3x - 7\)[/tex]:
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times -7 = +28x^2
\][/tex]
2. Combine both results:
Put these terms together:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
Therefore, the correct answer is:
B. [tex]\(-12x^3 + 28x^2\)[/tex]
1. Distribute the [tex]\(-4x^2\)[/tex] across the terms inside the parentheses [tex]\(3x - 7\)[/tex]:
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \times 3x = -12x^3
\][/tex]
- Multiply [tex]\(-4x^2\)[/tex] by [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \times -7 = +28x^2
\][/tex]
2. Combine both results:
Put these terms together:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
Therefore, the correct answer is:
B. [tex]\(-12x^3 + 28x^2\)[/tex]