Answer :
To simplify the expression [tex]\(-4x^2(3x - 7)\)[/tex], we will use the distributive property. This means we distribute [tex]\(-4x^2\)[/tex] to each term inside the parentheses.
1. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \cdot 3x = -12x^3
\][/tex]
2. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \cdot (-7) = +28x^2
\][/tex]
3. Combine the two terms:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
The correct answer is B. [tex]\(-12x^3 + 28x^2\)[/tex].
1. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(3x\)[/tex]:
[tex]\[
-4x^2 \cdot 3x = -12x^3
\][/tex]
2. Distribute [tex]\(-4x^2\)[/tex] to [tex]\(-7\)[/tex]:
[tex]\[
-4x^2 \cdot (-7) = +28x^2
\][/tex]
3. Combine the two terms:
[tex]\[
-12x^3 + 28x^2
\][/tex]
So, the simplified expression is [tex]\(-12x^3 + 28x^2\)[/tex].
The correct answer is B. [tex]\(-12x^3 + 28x^2\)[/tex].