College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression:

[tex]\[

(-2x - 9y^2)(-4x - 3)

\][/tex]

Choose the correct simplified form:

A. [tex]\(-8x^2 - 6x - 36xy^2 - 27y^2\)[/tex]

B. [tex]\(-14x^2 - 36xy^2 + 27y^2\)[/tex]

C. [tex]\(8x^2 + 6x + 36xy^2 + 27y^2\)[/tex]

D. [tex]\(14x^2 + 36xy^2 + 27y^2\)[/tex]

Answer :

Sure! Let's solve the expression [tex]\((-2x - 9y^2)(-4x - 3)\)[/tex] step-by-step by distributing the terms.

1. Apply the distributive property: Distribute each term in the first set of parentheses to each term in the second set of parentheses.

[tex]\[
(-2x - 9y^2)(-4x - 3) = (-2x)(-4x) + (-2x)(-3) + (-9y^2)(-4x) + (-9y^2)(-3)
\][/tex]

2. Multiply each term:
- Multiply [tex]\((-2x)(-4x)\)[/tex]:

[tex]\[
(-2x)(-4x) = 8x^2
\][/tex]

- Multiply [tex]\((-2x)(-3)\)[/tex]:

[tex]\[
(-2x)(-3) = 6x
\][/tex]

- Multiply [tex]\((-9y^2)(-4x)\)[/tex]:

[tex]\[
(-9y^2)(-4x) = 36xy^2
\][/tex]

- Multiply [tex]\((-9y^2)(-3)\)[/tex]:

[tex]\[
(-9y^2)(-3) = 27y^2
\][/tex]

3. Combine all the results:

Adding these results together, we have:

[tex]\[
8x^2 + 6x + 36xy^2 + 27y^2
\][/tex]

So, the simplified result of the expression is:

[tex]\[ 8x^2 + 6x + 36xy^2 + 27y^2 \][/tex]

This is the expanded and simplified form of the original expression given.