High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression:

[tex]2x^3 + 3x^2 - 32x - 48[/tex]

Answer :

We want to factor the polynomial
[tex]$$
2x^3 + 3x^2 - 32x - 48.
$$[/tex]

Step 1. Find a Root

A good strategy is to try simple values for [tex]\( x \)[/tex] to see if they are roots. Testing [tex]\( x = 4 \)[/tex]:
[tex]$$
2(4)^3 + 3(4)^2 - 32(4) - 48 = 2(64) + 3(16) - 128 - 48 = 128 + 48 - 128 - 48 = 0.
$$[/tex]
Since the result is 0, [tex]\( x = 4 \)[/tex] is a root. This means that [tex]\( (x - 4) \)[/tex] is a factor of the polynomial.

Step 2. Divide the Polynomial by [tex]\( (x - 4) \)[/tex]

Divide
[tex]$$
2x^3 + 3x^2 - 32x - 48
$$[/tex]
by [tex]\( x - 4 \)[/tex] to obtain a quadratic. The division yields:
[tex]$$
2x^3 + 3x^2 - 32x - 48 = (x - 4)(2x^2 + 11x + 12).
$$[/tex]

Step 3. Factor the Quadratic

Now, factor the quadratic
[tex]$$
2x^2 + 11x + 12.
$$[/tex]
We look for two numbers that multiply to [tex]\( 2 \times 12 = 24 \)[/tex] and add up to [tex]\( 11 \)[/tex]. These numbers are [tex]\( 3 \)[/tex] and [tex]\( 8 \)[/tex] because [tex]\( 3 + 8 = 11 \)[/tex] and [tex]\( 3 \times 8 = 24 \)[/tex].

Rewrite the middle term:
[tex]$$
2x^2 + 11x + 12 = 2x^2 + 3x + 8x + 12.
$$[/tex]
Group the terms:
[tex]$$
(2x^2 + 3x) + (8x + 12).
$$[/tex]
Factor each group:
- From [tex]\( 2x^2 + 3x \)[/tex], factor out [tex]\( x \)[/tex]:
[tex]$$
x(2x + 3).
$$[/tex]
- From [tex]\( 8x + 12 \)[/tex], factor out [tex]\( 4 \)[/tex]:
[tex]$$
4(2x + 3).
$$[/tex]

Now, since both groups contain the common factor [tex]\( (2x + 3) \)[/tex], we have:
[tex]$$
2x^2 + 11x + 12 = (2x + 3)(x + 4).
$$[/tex]

Step 4. Write the Final Factored Form

Substitute back into the factorization:
[tex]$$
2x^3 + 3x^2 - 32x - 48 = (x - 4)(2x + 3)(x + 4).
$$[/tex]

Thus, the fully factored form of the polynomial is:
[tex]$$
\boxed{(x - 4)(x + 4)(2x + 3)}.
$$[/tex]