High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify the expression \(5(x - 3)(x^2 + 4x + 1)\).

A. \(5x^3 - 75x^2 + 25 - 15\)
B. \(5x^3 + 25x^2 - 75x - 15\)
C. \(5x^3 + x^2 - 11x - 3\)
D. \(5x^3 + 5x^3 - 55x - 15\)

Answer :

Answer:

Down below (I believe there may be a typo in answer choice D. I think it's supposed to be 5x^3 + 5x^2. The typo being the three shown in the answer choice.

Step-by-step explanation:

First, distribute 5 to the (x - 3)

(5x - 15)

Then, distribute (5x - 15) to (x^2 + 4x + 1)

5xx^2 + 5x * 4x + 5x * 1 - 15x^2 - 15 * 4x - 15 * 1

Simplify:

5x^3 + 5x^2 - 55x - 15

Hope this helps!

[tex]\bf 5(x-3)(x^2+4x+1) \\\\[-0.35em] ~\dotfill\\\\ \begin{array}{llll} x-3\\ \times ~~5\\ \cline{1-1} 5x-15 \end{array}\qquad \qquad \begin{array}{llll} x^2+4x+1\\ \times ~~5x-15\\ \cline{1-1} 5x^3+20x^2+5x\\ -15x^2-60x-15 \end{array} \\\\\\ 5(x-3)(x^2+4x+1)\implies 5x^3+20x^2+5x-15x^2-60x-15 \\\\\\ 5x^3+20x^2-15x^2+5x-60x-15\implies 5x^3+5x^2-55x-15[/tex]