Answer :
To simplify the expression [tex]\( x^4 \cdot x^7 \cdot x^7 \)[/tex], you can use the property of exponents, which states that when you multiply like bases, you add the exponents. This property looks like [tex]\( a^m \cdot a^n = a^{m+n} \)[/tex].
Let's break it down:
1. Start with the expression: [tex]\( x^4 \cdot x^7 \cdot x^7 \)[/tex].
2. First, combine the first two terms:
[tex]\[
x^4 \cdot x^7 = x^{4+7} = x^{11}
\][/tex]
3. Now, take the result from step 2 and combine it with the third term:
[tex]\[
x^{11} \cdot x^7 = x^{11+7} = x^{18}
\][/tex]
So, the simplified form of the expression is [tex]\( x^{18} \)[/tex].
Let's break it down:
1. Start with the expression: [tex]\( x^4 \cdot x^7 \cdot x^7 \)[/tex].
2. First, combine the first two terms:
[tex]\[
x^4 \cdot x^7 = x^{4+7} = x^{11}
\][/tex]
3. Now, take the result from step 2 and combine it with the third term:
[tex]\[
x^{11} \cdot x^7 = x^{11+7} = x^{18}
\][/tex]
So, the simplified form of the expression is [tex]\( x^{18} \)[/tex].