College

Simplify [tex]\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}[/tex] completely.

A. [tex]25x^3[/tex]

B. [tex]25x[/tex]

C. [tex]5x^3[/tex]

D. [tex]5x[/tex]

Answer :

We start with the expression

[tex]$$
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}.
$$[/tex]

Step 1: Use the property of cube roots that

[tex]$$
\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{ab}.
$$[/tex]

Thus, we combine the cube roots:

[tex]$$
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x)(25x^2)}.
$$[/tex]

Step 2: Multiply the radicands:

- Multiply the coefficients: [tex]$5 \cdot 25 = 125$[/tex].
- Multiply the variables: [tex]$x \cdot x^2 = x^3$[/tex].

This gives:

[tex]$$
(5x)(25x^2) = 125x^3.
$$[/tex]

So the expression becomes:

[tex]$$
\sqrt[3]{125x^3}.
$$[/tex]

Step 3: Simplify the cube root by separating the numerical and variable parts:

[tex]$$
\sqrt[3]{125x^3} = \sqrt[3]{125} \cdot \sqrt[3]{x^3}.
$$[/tex]

Since [tex]$125 = 5^3$[/tex], we have

[tex]$$
\sqrt[3]{125} = 5.
$$[/tex]

And for the variable,

[tex]$$
\sqrt[3]{x^3} = x.
$$[/tex]

Thus, the expression simplifies to:

[tex]$$
5 \cdot x = 5x.
$$[/tex]

Final Answer:

[tex]$$
5x.
$$[/tex]