High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]$\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}$[/tex] completely.

A. [tex]$25x^3$[/tex]
B. [tex][tex]$25x$[/tex][/tex]
C. [tex]$5x^3$[/tex]
D. [tex]$5x$[/tex]

Answer :

To simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex], we can follow a step-by-step approach:

1. Understand Cube Roots: Cube roots work similarly to square roots but deal with powers of three. The cube root [tex]\(\sqrt[3]{a}\)[/tex] is equivalent to [tex]\(a^{1/3}\)[/tex].

2. Apply Cube Root Properties: We know that [tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex].

3. Multiply Inside the Cube Root: Using the property above, the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] becomes [tex]\(\sqrt[3]{(5x) \cdot (25x^2)}\)[/tex].

4. Multiply the Terms: Inside the cube root, multiply the coefficients and the variables:
- Coefficients: [tex]\(5 \cdot 25 = 125\)[/tex]
- Variables: [tex]\(x \cdot x^2 = x^{1+2} = x^3\)[/tex]

5. Simplify Inside the Cube Root: Now the expression inside the cube root is [tex]\(125x^3\)[/tex].

6. Take the Cube Root:
- The cube root of [tex]\(125\)[/tex] is [tex]\(5\)[/tex] because [tex]\(5 \times 5 \times 5 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex] because [tex]\((x^3)^{1/3} = x^{3/3} = x\)[/tex].

7. Combine the Results: The expression simplifies to [tex]\(5x\)[/tex].

Therefore, the completely simplified expression is [tex]\(5x\)[/tex].