High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}[/tex] completely.

A. [tex]25x^3[/tex]
B. [tex]25x[/tex]
C. [tex]5x^3[/tex]
D. [tex]5x[/tex]

Answer :

Sure! Let's simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex] step by step.

1. Combine the cube roots: According to the property of exponents, [tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex]. Therefore, we can combine the two cube roots into one:
[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}
\][/tex]

2. Multiply the terms inside the cube root: Now, multiply the terms inside:
[tex]\[
5x \cdot 25x^2 = (5 \cdot 25) \cdot (x \cdot x^2) = 125x^3
\][/tex]

3. Take the cube root of the product: Next, calculate the cube root of the product:
[tex]\[
\sqrt[3]{125x^3}
\][/tex]

- The cube root of 125 is 5 because [tex]\(5^3 = 125\)[/tex].
- The cube root of [tex]\(x^3\)[/tex] is x because [tex]\((x)^3 = x^3\)[/tex].

4. Result: Combine these results:
[tex]\[
\sqrt[3]{125x^3} = 5x
\][/tex]

Therefore, the simplified expression is [tex]\(5x\)[/tex].

The correct answer is [tex]\(5x\)[/tex].