High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}[/tex] completely.

A. [tex]25x^3[/tex]
B. [tex]25x[/tex]
C. [tex]5x^3[/tex]
D. [tex]5x[/tex]

Answer :

To simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex], we will use the property of exponents for cube roots:
[tex]\(\sqrt[3]{a} = a^{1/3}\)[/tex].

Let's break it down step by step:

1. Rewrite each cube root:
- [tex]\(\sqrt[3]{5x}\)[/tex] can be written as: [tex]\((5x)^{1/3}\)[/tex]
- [tex]\(\sqrt[3]{25x^2}\)[/tex] can be written as: [tex]\((25x^2)^{1/3}\)[/tex]

2. Multiply the expressions:
- Now, use the property of exponents that states when you multiply two expressions with the same exponent, you can combine them:
[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = (5x)^{1/3} \cdot (25x^2)^{1/3} = (5x \cdot 25x^2)^{1/3}
\][/tex]

3. Simplify inside the cube root:
- Multiply the terms inside the cube root:
[tex]\[
5x \cdot 25x^2 = 125x^3
\][/tex]

4. Combine and simplify:
- Now, simplify [tex]\((125x^3)^{1/3}\)[/tex]. The cube root of 125 is 5, and the cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex]:
[tex]\[
(125x^3)^{1/3} = 5x
\][/tex]

Therefore, the simplified expression is [tex]\(5x\)[/tex].