College

Simplify [tex]$\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}$[/tex] completely.

A. [tex]$25x^3$[/tex]
B. [tex]$25x$[/tex]
C. [tex]$5x^3$[/tex]
D. [tex]$5x$[/tex]

Answer :

Sure! Let's simplify the expression [tex]\(\sqrt[3]{5x} \cdot \sqrt[3]{25x^2}\)[/tex].

1. Combine the cube roots:
Using the property of cube roots that says [tex]\(\sqrt[3]{a} \cdot \sqrt[3]{b} = \sqrt[3]{a \cdot b}\)[/tex], we can combine the expression as follows:

[tex]\[
\sqrt[3]{5x} \cdot \sqrt[3]{25x^2} = \sqrt[3]{(5x) \cdot (25x^2)}
\][/tex]

2. Multiply the expressions under the cube root:
Multiply the terms inside the cube root:

[tex]\[
(5x) \cdot (25x^2) = 5 \cdot 25 \cdot x \cdot x^2 = 125x^3
\][/tex]

3. Simplify the cube root:
Now, take the cube root of [tex]\(125x^3\)[/tex]:

[tex]\[
\sqrt[3]{125x^3}
\][/tex]

- Recognize that [tex]\(125 = 5^3\)[/tex].
- The cube root of [tex]\(5^3\)[/tex] is 5.
- The cube root of [tex]\(x^3\)[/tex] is [tex]\(x\)[/tex].

Therefore:

[tex]\[
\sqrt[3]{125x^3} = 5x
\][/tex]

The fully simplified expression is [tex]\(5x\)[/tex].

So, the correct answer is: [tex]\(\boxed{5x}\)[/tex].