Answer :
To simplify the given expression, [tex]\((-6x^4 - 5x^3 + x^2) + (4x^2 + 6x^4 - 4x^5)\)[/tex], we'll combine the like terms. Let's break down the expression step by step:
1. Write down the entire expression:
[tex]\((-6x^4 - 5x^3 + x^2) + (4x^2 + 6x^4 - 4x^5)\)[/tex]
2. Rearrange and group the like terms:
[tex]\[
(-6x^4 + 6x^4) - 5x^3 + (x^2 + 4x^2) - 4x^5
\][/tex]
3. Combine the like terms:
- The [tex]\(x^4\)[/tex] terms: [tex]\(-6x^4 + 6x^4 = 0\)[/tex]
- The [tex]\(x^3\)[/tex] term remains: [tex]\(-5x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(x^2 + 4x^2 = 5x^2\)[/tex]
- The [tex]\(x^5\)[/tex] term remains: [tex]\(-4x^5\)[/tex]
4. Write the expression with the combined terms:
[tex]\[-4x^5 - 5x^3 + 5x^2\][/tex]
The simplified expression is:
[tex]\[
-4x^5 - 5x^3 + 5x^2
\][/tex]
1. Write down the entire expression:
[tex]\((-6x^4 - 5x^3 + x^2) + (4x^2 + 6x^4 - 4x^5)\)[/tex]
2. Rearrange and group the like terms:
[tex]\[
(-6x^4 + 6x^4) - 5x^3 + (x^2 + 4x^2) - 4x^5
\][/tex]
3. Combine the like terms:
- The [tex]\(x^4\)[/tex] terms: [tex]\(-6x^4 + 6x^4 = 0\)[/tex]
- The [tex]\(x^3\)[/tex] term remains: [tex]\(-5x^3\)[/tex]
- The [tex]\(x^2\)[/tex] terms: [tex]\(x^2 + 4x^2 = 5x^2\)[/tex]
- The [tex]\(x^5\)[/tex] term remains: [tex]\(-4x^5\)[/tex]
4. Write the expression with the combined terms:
[tex]\[-4x^5 - 5x^3 + 5x^2\][/tex]
The simplified expression is:
[tex]\[
-4x^5 - 5x^3 + 5x^2
\][/tex]