Answer :
To simplify the expression [tex]\(\frac{12x^5 - 21x^4 - 18}{3}\)[/tex], follow these steps:
1. Identify the Expression:
The expression we need to simplify is [tex]\(\frac{12x^5 - 21x^4 - 18}{3}\)[/tex].
2. Apply Division to Each Term:
We divide each term in the numerator by the denominator (3):
- [tex]\(\frac{12x^5}{3} = 4x^5\)[/tex]
- [tex]\(\frac{-21x^4}{3} = -7x^4\)[/tex]
- [tex]\(\frac{-18}{3} = -6\)[/tex]
3. Combine the Simplified Terms:
Combine the results from step 2 to form a single expression:
[tex]\[
4x^5 - 7x^4 - 6
\][/tex]
So, the simplified form of [tex]\(\frac{12x^5 - 21x^4 - 18}{3}\)[/tex] is [tex]\(4x^5 - 7x^4 - 6\)[/tex].
1. Identify the Expression:
The expression we need to simplify is [tex]\(\frac{12x^5 - 21x^4 - 18}{3}\)[/tex].
2. Apply Division to Each Term:
We divide each term in the numerator by the denominator (3):
- [tex]\(\frac{12x^5}{3} = 4x^5\)[/tex]
- [tex]\(\frac{-21x^4}{3} = -7x^4\)[/tex]
- [tex]\(\frac{-18}{3} = -6\)[/tex]
3. Combine the Simplified Terms:
Combine the results from step 2 to form a single expression:
[tex]\[
4x^5 - 7x^4 - 6
\][/tex]
So, the simplified form of [tex]\(\frac{12x^5 - 21x^4 - 18}{3}\)[/tex] is [tex]\(4x^5 - 7x^4 - 6\)[/tex].