High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Simplify [tex]8 + 3[x - 2[x + 5(x + 3)]] [/tex].

A. [tex]-33x + 82[/tex]
B. [tex]33x - 82[/tex]
C. [tex]-33x - 82[/tex]

Answer :

Let's simplify the expression step by step:

1. Start with the innermost expression:
[tex]\[
5(x + 3)
\][/tex]
Distribute the 5:
[tex]\[
5x + 15
\][/tex]

2. Substitute and simplify the next expression:
Substitute [tex]\(5x + 15\)[/tex] into the expression [tex]\(2[x + 5(x + 3)]\)[/tex]:
[tex]\[
2[x + (5x + 15)]
\][/tex]
Simplify inside the brackets first:
[tex]\[
2[x + 5x + 15] \rightarrow 2[6x + 15]
\][/tex]
Now distribute the 2:
[tex]\[
12x + 30
\][/tex]

3. Substitute into the outer expression:
Substitute [tex]\(12x + 30\)[/tex] into the expression [tex]\(3[x - 2[x + 5(x + 3)]]\)[/tex]:
[tex]\[
3[x - (12x + 30)]
\][/tex]
Simplify inside the brackets:
[tex]\[
3[x - 12x - 30] \rightarrow 3[-11x - 30]
\][/tex]
Now distribute the 3:
[tex]\[
-33x - 90
\][/tex]

4. Add the constant from the original expression:
Finally, add 8 to the expression:
[tex]\[
8 + (-33x - 90)
\][/tex]
Simplify:
[tex]\[
-33x - 90 + 8 \rightarrow -33x - 82
\][/tex]

The simplified expression is:
[tex]\[
-33x - 82
\][/tex]