College

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ SIMPLIFY:

1. [tex]4 \cdot 9 + 1[/tex]
2. [tex]6 + 7 \cdot 10[/tex]

Answers:

A. [tex]42 - 2 \cdot 7[/tex]
B. 62
C. [tex]8 + 50 \div 2[/tex]
D. 27
E. [tex](10)(3) - 4[/tex]
F. 37
G. [tex]2 \cdot 8 + 3 \cdot 5[/tex]
H. 31
I. 33
J. 76
K. [tex]\frac{60}{3} - (2)(4)[/tex]
L. 12
M. [tex]5 \cdot 12 + \frac{32}{16}[/tex]
N. 0
O. 83
P. [tex]3 + 2 \cdot 5 \cdot 8[/tex]
Q. 28

Match each simplified expression with the correct answer.

Answer :

Sure! Let's simplify each expression step-by-step to understand how the calculations work.

1. Expression: [tex]\(4 \cdot 9 + 1\)[/tex]
- First, multiply [tex]\(4\)[/tex] by [tex]\(9\)[/tex] to get [tex]\(36\)[/tex].
- Then, add [tex]\(1\)[/tex] to [tex]\(36\)[/tex] to get the result [tex]\(37\)[/tex].

2. Expression: [tex]\(6 + 7 \cdot 10\)[/tex]
- First, multiply [tex]\(7\)[/tex] by [tex]\(10\)[/tex] to get [tex]\(70\)[/tex].
- Then, add [tex]\(6\)[/tex] to [tex]\(70\)[/tex] to get the result [tex]\(76\)[/tex].

Now, let's verify the evaluations for the other expressions, which were cross-referenced to find correct matches:

- Expression: [tex]\(42 - 2 \cdot 7\)[/tex]
- Multiply [tex]\(2\)[/tex] by [tex]\(7\)[/tex] to get [tex]\(14\)[/tex].
- Subtract [tex]\(14\)[/tex] from [tex]\(42\)[/tex] to get [tex]\(28\)[/tex].

- Expression: [tex]\(8 + \frac{50}{2}\)[/tex]
- Divide [tex]\(50\)[/tex] by [tex]\(2\)[/tex] to get [tex]\(25\)[/tex].
- Add [tex]\(25\)[/tex] to [tex]\(8\)[/tex] to get [tex]\(33\)[/tex].

- Expression: [tex]\((10)(3) - 4\)[/tex]
- Multiply [tex]\(10\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(30\)[/tex].
- Subtract [tex]\(4\)[/tex] from [tex]\(30\)[/tex] to get [tex]\(26\)[/tex].

- Expression: [tex]\(2 \cdot 8 + 3 \cdot 5\)[/tex]
- Multiply [tex]\(2\)[/tex] by [tex]\(8\)[/tex] to get [tex]\(16\)[/tex].
- Multiply [tex]\(3\)[/tex] by [tex]\(5\)[/tex] to get [tex]\(15\)[/tex].
- Add [tex]\(16\)[/tex] and [tex]\(15\)[/tex] to get [tex]\(31\)[/tex].

- Expression: [tex]\(\frac{60}{3} - (2 \cdot 4)\)[/tex]
- Divide [tex]\(60\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(20\)[/tex].
- Multiply [tex]\(2\)[/tex] by [tex]\(4\)[/tex] to get [tex]\(8\)[/tex].
- Subtract [tex]\(8\)[/tex] from [tex]\(20\)[/tex] to get [tex]\(12\)[/tex].

- Expression: [tex]\(5 \cdot 12 + \frac{32}{16}\)[/tex]
- Multiply [tex]\(5\)[/tex] by [tex]\(12\)[/tex] to get [tex]\(60\)[/tex].
- Divide [tex]\(32\)[/tex] by [tex]\(16\)[/tex] to get [tex]\(2\)[/tex].
- Add [tex]\(60\)[/tex] and [tex]\(2\)[/tex] to get [tex]\(62\)[/tex].

- Expression: [tex]\(3 + 2 \cdot 5 \cdot 8\)[/tex]
- First, multiply [tex]\(2\)[/tex] by [tex]\(5\)[/tex] to get [tex]\(10\)[/tex].
- Then, multiply [tex]\(10\)[/tex] by [tex]\(8\)[/tex] to get [tex]\(80\)[/tex].
- Add [tex]\(80\)[/tex] to [tex]\(3\)[/tex] to get [tex]\(83\)[/tex].

These are the simplified results for each expression.