Answer :
Sure! Let's simplify each expression step-by-step to understand how the calculations work.
1. Expression: [tex]\(4 \cdot 9 + 1\)[/tex]
- First, multiply [tex]\(4\)[/tex] by [tex]\(9\)[/tex] to get [tex]\(36\)[/tex].
- Then, add [tex]\(1\)[/tex] to [tex]\(36\)[/tex] to get the result [tex]\(37\)[/tex].
2. Expression: [tex]\(6 + 7 \cdot 10\)[/tex]
- First, multiply [tex]\(7\)[/tex] by [tex]\(10\)[/tex] to get [tex]\(70\)[/tex].
- Then, add [tex]\(6\)[/tex] to [tex]\(70\)[/tex] to get the result [tex]\(76\)[/tex].
Now, let's verify the evaluations for the other expressions, which were cross-referenced to find correct matches:
- Expression: [tex]\(42 - 2 \cdot 7\)[/tex]
- Multiply [tex]\(2\)[/tex] by [tex]\(7\)[/tex] to get [tex]\(14\)[/tex].
- Subtract [tex]\(14\)[/tex] from [tex]\(42\)[/tex] to get [tex]\(28\)[/tex].
- Expression: [tex]\(8 + \frac{50}{2}\)[/tex]
- Divide [tex]\(50\)[/tex] by [tex]\(2\)[/tex] to get [tex]\(25\)[/tex].
- Add [tex]\(25\)[/tex] to [tex]\(8\)[/tex] to get [tex]\(33\)[/tex].
- Expression: [tex]\((10)(3) - 4\)[/tex]
- Multiply [tex]\(10\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(30\)[/tex].
- Subtract [tex]\(4\)[/tex] from [tex]\(30\)[/tex] to get [tex]\(26\)[/tex].
- Expression: [tex]\(2 \cdot 8 + 3 \cdot 5\)[/tex]
- Multiply [tex]\(2\)[/tex] by [tex]\(8\)[/tex] to get [tex]\(16\)[/tex].
- Multiply [tex]\(3\)[/tex] by [tex]\(5\)[/tex] to get [tex]\(15\)[/tex].
- Add [tex]\(16\)[/tex] and [tex]\(15\)[/tex] to get [tex]\(31\)[/tex].
- Expression: [tex]\(\frac{60}{3} - (2 \cdot 4)\)[/tex]
- Divide [tex]\(60\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(20\)[/tex].
- Multiply [tex]\(2\)[/tex] by [tex]\(4\)[/tex] to get [tex]\(8\)[/tex].
- Subtract [tex]\(8\)[/tex] from [tex]\(20\)[/tex] to get [tex]\(12\)[/tex].
- Expression: [tex]\(5 \cdot 12 + \frac{32}{16}\)[/tex]
- Multiply [tex]\(5\)[/tex] by [tex]\(12\)[/tex] to get [tex]\(60\)[/tex].
- Divide [tex]\(32\)[/tex] by [tex]\(16\)[/tex] to get [tex]\(2\)[/tex].
- Add [tex]\(60\)[/tex] and [tex]\(2\)[/tex] to get [tex]\(62\)[/tex].
- Expression: [tex]\(3 + 2 \cdot 5 \cdot 8\)[/tex]
- First, multiply [tex]\(2\)[/tex] by [tex]\(5\)[/tex] to get [tex]\(10\)[/tex].
- Then, multiply [tex]\(10\)[/tex] by [tex]\(8\)[/tex] to get [tex]\(80\)[/tex].
- Add [tex]\(80\)[/tex] to [tex]\(3\)[/tex] to get [tex]\(83\)[/tex].
These are the simplified results for each expression.
1. Expression: [tex]\(4 \cdot 9 + 1\)[/tex]
- First, multiply [tex]\(4\)[/tex] by [tex]\(9\)[/tex] to get [tex]\(36\)[/tex].
- Then, add [tex]\(1\)[/tex] to [tex]\(36\)[/tex] to get the result [tex]\(37\)[/tex].
2. Expression: [tex]\(6 + 7 \cdot 10\)[/tex]
- First, multiply [tex]\(7\)[/tex] by [tex]\(10\)[/tex] to get [tex]\(70\)[/tex].
- Then, add [tex]\(6\)[/tex] to [tex]\(70\)[/tex] to get the result [tex]\(76\)[/tex].
Now, let's verify the evaluations for the other expressions, which were cross-referenced to find correct matches:
- Expression: [tex]\(42 - 2 \cdot 7\)[/tex]
- Multiply [tex]\(2\)[/tex] by [tex]\(7\)[/tex] to get [tex]\(14\)[/tex].
- Subtract [tex]\(14\)[/tex] from [tex]\(42\)[/tex] to get [tex]\(28\)[/tex].
- Expression: [tex]\(8 + \frac{50}{2}\)[/tex]
- Divide [tex]\(50\)[/tex] by [tex]\(2\)[/tex] to get [tex]\(25\)[/tex].
- Add [tex]\(25\)[/tex] to [tex]\(8\)[/tex] to get [tex]\(33\)[/tex].
- Expression: [tex]\((10)(3) - 4\)[/tex]
- Multiply [tex]\(10\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(30\)[/tex].
- Subtract [tex]\(4\)[/tex] from [tex]\(30\)[/tex] to get [tex]\(26\)[/tex].
- Expression: [tex]\(2 \cdot 8 + 3 \cdot 5\)[/tex]
- Multiply [tex]\(2\)[/tex] by [tex]\(8\)[/tex] to get [tex]\(16\)[/tex].
- Multiply [tex]\(3\)[/tex] by [tex]\(5\)[/tex] to get [tex]\(15\)[/tex].
- Add [tex]\(16\)[/tex] and [tex]\(15\)[/tex] to get [tex]\(31\)[/tex].
- Expression: [tex]\(\frac{60}{3} - (2 \cdot 4)\)[/tex]
- Divide [tex]\(60\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(20\)[/tex].
- Multiply [tex]\(2\)[/tex] by [tex]\(4\)[/tex] to get [tex]\(8\)[/tex].
- Subtract [tex]\(8\)[/tex] from [tex]\(20\)[/tex] to get [tex]\(12\)[/tex].
- Expression: [tex]\(5 \cdot 12 + \frac{32}{16}\)[/tex]
- Multiply [tex]\(5\)[/tex] by [tex]\(12\)[/tex] to get [tex]\(60\)[/tex].
- Divide [tex]\(32\)[/tex] by [tex]\(16\)[/tex] to get [tex]\(2\)[/tex].
- Add [tex]\(60\)[/tex] and [tex]\(2\)[/tex] to get [tex]\(62\)[/tex].
- Expression: [tex]\(3 + 2 \cdot 5 \cdot 8\)[/tex]
- First, multiply [tex]\(2\)[/tex] by [tex]\(5\)[/tex] to get [tex]\(10\)[/tex].
- Then, multiply [tex]\(10\)[/tex] by [tex]\(8\)[/tex] to get [tex]\(80\)[/tex].
- Add [tex]\(80\)[/tex] to [tex]\(3\)[/tex] to get [tex]\(83\)[/tex].
These are the simplified results for each expression.