High School

Select the value of each expression when [tex]$x=1 \frac{1}{3}$[/tex].

1. [tex]$4 \frac{1}{2} + x + 3 \frac{5}{6}$[/tex]
A. [tex]$8 \frac{1}{3}$[/tex]
B. [tex]$8 \frac{2}{3}$[/tex]
C. [tex]$9 \frac{1}{6}$[/tex]
D. [tex]$9 \frac{2}{3}$[/tex]

2. [tex]$\frac{2}{5} + \left(x - \frac{1}{4}\right)$[/tex]
A. [tex]$\frac{29}{60}$[/tex]
B. [tex]$\frac{49}{60}$[/tex]
C. [tex]$1 \frac{29}{60}$[/tex]
D. [tex]$1 \frac{59}{60}$[/tex]

Answer :

Let's solve the expressions given that [tex]\( x = 1 \frac{1}{3} \)[/tex].

First, convert [tex]\( x = 1 \frac{1}{3} \)[/tex] into an improper fraction:

[tex]\[ x = 1 + \frac{1}{3} = \frac{3}{3} + \frac{1}{3} = \frac{4}{3} \][/tex]

Now, let's evaluate each expression.

### Expression 1
[tex]\[ 4 \frac{1}{2} + x + 3 \frac{5}{6} \][/tex]

Convert each mixed number to an improper fraction:

- [tex]\( 4 \frac{1}{2} = 4 + \frac{1}{2} = \frac{8}{2} + \frac{1}{2} = \frac{9}{2} \)[/tex]
- [tex]\( 3 \frac{5}{6} = 3 + \frac{5}{6} = \frac{18}{6} + \frac{5}{6} = \frac{23}{6} \)[/tex]

Now, add these fractions together. First, find a common denominator (which is 6 here):

[tex]\[ \frac{9}{2} = \frac{27}{6}, \quad \frac{4}{3} = \frac{8}{6} \][/tex]

Add them all together:

[tex]\[ \frac{27}{6} + \frac{8}{6} + \frac{23}{6} = \frac{27 + 8 + 23}{6} = \frac{58}{6} \][/tex]

Convert [tex]\(\frac{58}{6}\)[/tex] into a mixed number:

[tex]\[ \frac{58}{6} = 9 \frac{4}{6} = 9 \frac{2}{3} \][/tex]

So, the value is:
[tex]\[ \text{D. } 9 \frac{2}{3} \][/tex]

### Expression 2
[tex]\[ \frac{2}{5} + \left(x - \frac{1}{4}\right) \][/tex]

First, calculate [tex]\( x - \frac{1}{4} \)[/tex]:

[tex]\[ x = \frac{4}{3} \quad \text{(converted earlier)} \][/tex]

Find a common denominator for [tex]\( \frac{4}{3} \)[/tex] and [tex]\( \frac{1}{4} \)[/tex] (which is 12):

[tex]\[ \frac{4}{3} = \frac{16}{12}, \quad \frac{1}{4} = \frac{3}{12} \][/tex]

Subtract:

[tex]\[ \frac{16}{12} - \frac{3}{12} = \frac{13}{12} \][/tex]

Now add [tex]\( \frac{2}{5} \)[/tex], finding a common denominator (which is 60):

[tex]\[ \frac{2}{5} = \frac{24}{60}, \quad \frac{13}{12} = \frac{65}{60} \][/tex]

Add:

[tex]\[ \frac{24}{60} + \frac{65}{60} = \frac{89}{60} \][/tex]

Convert [tex]\(\frac{89}{60}\)[/tex] into a mixed number:

[tex]\[ \frac{89}{60} = 1 \frac{29}{60} \][/tex]

So, the value is:
[tex]\[ \text{C. } 1 \frac{29}{60} \][/tex]

These are the results for each expression given [tex]\( x = 1 \frac{1}{3} \)[/tex].