College

Select the simplified form of this expression:

[tex]\left(4^2 x^3\right)^3[/tex].

A. [tex]65,536 x^6[/tex]
B. [tex]4,096 x^9[/tex]
C. [tex]4,096 x^6[/tex]
D. [tex]1,024 x^9[/tex]
E. [tex]4 x^9[/tex]

Answer :

Sure! Let's simplify the expression [tex]\(\left(4^2 x^3\right)^3\)[/tex] step-by-step.

1. Simplify inside the parentheses:
- We have [tex]\(4^2\)[/tex], which means 4 multiplied by itself: [tex]\(4 \times 4 = 16\)[/tex].
- So, the expression inside the parentheses becomes [tex]\(16x^3\)[/tex].

2. Raise the entire expression to the third power:
- Now we take [tex]\((16x^3)^3\)[/tex].

3. Apply the power of a product and power of a power rule:
- Using the rule [tex]\((a \cdot b)^n = a^n \cdot b^n\)[/tex], we get [tex]\((16)^3 \cdot (x^3)^3\)[/tex].

4. Calculate [tex]\(16^3\)[/tex]:
- [tex]\(16 \times 16 = 256\)[/tex].
- [tex]\(256 \times 16 = 4096\)[/tex].
- So, [tex]\(16^3 = 4096\)[/tex].

5. Use the power of a power rule for [tex]\(x^3\)[/tex]:
- The rule [tex]\((x^m)^n = x^{m \cdot n}\)[/tex] applies here.
- [tex]\((x^3)^3 = x^{3 \cdot 3} = x^9\)[/tex].

6. Combine the results:
- The expression [tex]\((16x^3)^3\)[/tex] simplifies to [tex]\(4096x^9\)[/tex].

Therefore, the simplified form is [tex]\(4096x^9\)[/tex], which matches option B.