High School

Dear beloved readers, welcome to our website! We hope your visit here brings you valuable insights and meaningful inspiration. Thank you for taking the time to stop by and explore the content we've prepared for you.
------------------------------------------------ Select the correct answer.

Which quadratic expression represents the product of these factors?

[tex](2x+5)(7-4x)[/tex]

A. [tex]-8x^2 - 6x + 35[/tex]

B. [tex]-8x^2 + 34x - 35[/tex]

C. [tex]-8x^2 + 6x - 35[/tex]

D. [tex]-8x^2 - 34x + 35[/tex]

Answer :

To solve the problem, we need to find the product of the two factors:

[tex]$$
(2x+5)(7-4x)
$$[/tex]

Step 1. Multiply the first term of the first factor by each term of the second factor:

- Multiply [tex]$2x$[/tex] by [tex]$7$[/tex]:
[tex]$$
2x \cdot 7 = 14x
$$[/tex]

- Multiply [tex]$2x$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
2x \cdot (-4x) = -8x^2
$$[/tex]

Step 2. Multiply the second term of the first factor by each term of the second factor:

- Multiply [tex]$5$[/tex] by [tex]$7$[/tex]:
[tex]$$
5 \cdot 7 = 35
$$[/tex]

- Multiply [tex]$5$[/tex] by [tex]$-4x$[/tex]:
[tex]$$
5 \cdot (-4x) = -20x
$$[/tex]

Step 3. Combine all the terms:

Write down all the products:
[tex]$$
-8x^2 + 14x - 20x + 35
$$[/tex]

Combine like terms ([tex]$14x - 20x$[/tex]):
[tex]$$
-8x^2 - 6x + 35
$$[/tex]

This quadratic expression represents the product of the factors.

Step 4. Select the Correct Option:

Comparing with the options given:

A. [tex]$-8 x^2-6 x+35$[/tex]
B. [tex]$-8 x^2+34 x-35$[/tex]
C. [tex]$-8 x^2+6 x-35$[/tex]
D. [tex]$-8 x^2-34 x+35$[/tex]

We see that the expression we found [tex]$(-8x^2 - 6x + 35)$[/tex] matches option A.

Thus, the correct answer is Option A.